An Improved Particle Filtering Algorithm Using Different Correlation Coefficients for Nonlinear System State Estimation

被引:6
|
作者
Meng, Qingxu [1 ]
Li, Kaicheng [1 ]
Zhao, Chen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Luoyu Rd 1037, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Kendall rank correlation coefficient; particle filtering; parameter estimation; Pearson correlation coefficient; order statistics correlation coefficient; Spearman's rank correlation coefficient; STATISTICS;
D O I
10.1089/big.2018.0130
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Particle filtering (PF) algorithm has found an increasingly wide utilization in many fields at present, especially in nonlinear and non-Gaussian situations. Because of the particle degeneracy limitation, various resampling methods have been researched. This article proposed an improved PF algorithm combining with different rank correlation coefficients to overcome the shortcomings of degeneracy. By simulating iteration operation in Matlab, it discovers that the proposed algorithm provides better accuracy than sequential importance resampling, Gaussian sum particle filter, and Gaussian mixture sigma-point particle filters in Gaussian mixture noise.
引用
收藏
页码:114 / 120
页数:7
相关论文
共 50 条
  • [21] Hyperparallel space set-membership filtering based state estimation algorithm for nonlinear system
    Wang Z.-Y.
    Li X.
    Wang Y.
    Ji Z.-C.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (09): : 2287 - 2295
  • [22] System state estimation by particle filtering for fault diagnosis and prognosis
    Cadini, F.
    Avram, D.
    Zio, E.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2010, 224 (O3) : 149 - 158
  • [23] State estimation comparison for a high-dimensional nonlinear system by particle-based filtering methods
    Kim, Sangil
    Jung, Il Hyo
    PROBABILISTIC ENGINEERING MECHANICS, 2017, 50 : 9 - 16
  • [24] An improved particle filtering projectile trajectory estimation algorithm fusing velocity information
    Liang, Chen
    Shen, Qiang
    Deng, Zilong
    Li, Hongyun
    Liang, Dong
    MEASUREMENT, 2025, 241
  • [25] Frequency-domain Parameter Identification of Nonlinear Generator Excitation System Based on Improved Particle Filtering Algorithm
    Liu, Ruilan
    Liu, Wei
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 3087 - 3090
  • [26] A particle swarm optimized particle filter for nonlinear system state estimation
    Tong, Guofeng
    Fang, Zheng
    Xu, Xinhe
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 438 - +
  • [27] AN APPROACH TO NONLINEAR STATE ESTIMATION USING EXTENDED FIR FILTERING
    Zhao, Shunyi
    Pomarico-Franquiz, Juan
    Shmaliy, Yuriy S.
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 436 - 440
  • [28] Estimation of Nonlinear Control Parameters In Induction Machine Using Particle Filtering
    Mansouri, Majdi
    Mohamed-Seghir, Mostefa
    Nounou, Hazem
    Nounou, Mohamed
    Abu-Rub, Haitham
    2013 10TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2013,
  • [29] Extension Particle Filtering Algorithm for State and Parameter Estimation in Dynamic Control Process
    Gao Xian-zhong
    Hou Zhong-xi
    Ren Bo-tao
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1133 - 1137
  • [30] Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm
    Mallick, Sourav
    Ghoshal, S. P.
    Acharjee, P.
    Thakur, S. S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 52 : 254 - 265