SPECTRAL GAP ESTIMATES FOR SOME BLOCK MATRICES

被引:2
|
作者
Veselic, Ivan [1 ]
Veselic, Kresimir [2 ]
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Fernuniv, Fak Math & Informat, D-58084 Hagen, Germany
来源
OPERATORS AND MATRICES | 2015年 / 9卷 / 02期
关键词
spectral gap estimates; block matrices; quais-definite matrices; Stokes matrices; Dirac symmetry; spectral pollution; SCHRODINGER-OPERATORS; PRODUCT;
D O I
10.7153/oam-09-15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We estimate the size of the spectral gap at zero for some Hermitian block matrices. Included are quasi-definite matrices, quasi-semidefinite matrices (the closure of the set of the quasi-definite matrices) and some related block matrices which need not belong to either of these classes. Matrices of such structure arise in quantum models of possibly disordered systems with supersymmetry or graphene like symmetry. Some of the results immediately extend to infinite dimension.
引用
收藏
页码:241 / 275
页数:35
相关论文
共 50 条
  • [31] On the spectral radius of antidiagonal block operator matrices
    Al, Pembe Ipek
    Ismailov, Zameddin I.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (10) : 2206 - 2217
  • [32] An estimation of the spectral radius of a product of block matrices
    Chen, MQ
    Li, XZ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 : 267 - 275
  • [33] Some new estimates of the ‘Jensen gap’
    Shoshana Abramovich
    Lars-Erik Persson
    Journal of Inequalities and Applications, 2016
  • [34] Some new estimates of the 'Jensen gap'
    Abramovich, Shoshana
    Persson, Lars-Erik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 9
  • [35] Some Results for the Drazin Inverses of the Sum of Two Matrices and Some Block Matrices
    Shakoor, Abdul
    Yang, Hu
    Ali, Ilyas
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [37] A note on sharp spectral estimates for periodic Jacobi matrices
    Kutsenko, Anton A.
    JOURNAL OF APPROXIMATION THEORY, 2019, 242 : 58 - 63
  • [38] UPPER NEGATIVE ESTIMATES FOR SPECTRAL ABSCISSA OF STABLE MATRICES
    OLIFIROV, KL
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1977, (02): : 63 - 69
  • [39] Spectral properties of some operator matrices
    Jung, IB
    Ko, EG
    Pearcy, C
    ARCHIV DER MATHEMATIK, 2003, 80 (01) : 37 - 46
  • [40] Spectral properties of some operator matrices
    Il Bong Jung
    Eungil Ko
    Carl Pearcy
    Archiv der Mathematik, 2003, 80 : 37 - 46