Some new estimates of the ‘Jensen gap’

被引:0
|
作者
Shoshana Abramovich
Lars-Erik Persson
机构
[1] University of Haifa,Department of Mathematics
[2] Luleå University of Thechnology,Department of Engineering Sciences and Mathematics
[3] UiT The Arctic University of Norway,undefined
关键词
Jensen’s inequality; convex function; -superconvex functions; superquadratic functions; Taylor expansion; 26D10; 26D15; 26B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let (μ,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( \mu,\Omega ) $\end{document} be a probability measure space. We consider the so-called ‘Jensen gap’ J(φ,μ,f)=∫Ωφ(f(s))dμ(s)−φ(∫Ωf(s)dμ(s))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ J ( \varphi,\mu,f ) = \int_{\Omega}\varphi \bigl( f ( s ) \bigr)\,d\mu ( s ) -\varphi \biggl( \int_{\Omega }f ( s )\,d\mu ( s ) \biggr) $$\end{document} for some classes of functions φ. Several new estimates and equalities are derived and compared with other results of this type. Especially the case when φ has a Taylor expansion is treated and the corresponding discrete results are pointed out.
引用
收藏
相关论文
共 50 条
  • [1] Some new estimates of the 'Jensen gap'
    Abramovich, Shoshana
    Persson, Lars-Erik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 9
  • [2] New Estimates for the Jensen Gap Using s-Convexity With Applications
    Khan, Muhammad Adil
    Khan, Shahid
    Chu, Yu-Ming
    FRONTIERS IN PHYSICS, 2020, 8
  • [3] THE TRADE UNION WAGE GAP IN BRITAIN - SOME NEW ESTIMATES
    GREEN, F
    ECONOMICS LETTERS, 1988, 27 (02) : 183 - 187
  • [4] A New Bound for the Jensen Gap With Applications in Information Theory
    Khan, Muhammad Adil
    Khan, Shahid
    Chu, Yuming
    IEEE ACCESS, 2020, 8 : 98001 - 98008
  • [5] SPECTRAL GAP ESTIMATES FOR SOME BLOCK MATRICES
    Veselic, Ivan
    Veselic, Kresimir
    OPERATORS AND MATRICES, 2015, 9 (02): : 241 - 275
  • [6] New estimates for the gap chromatic number
    Scheidweiler, Robert
    Triesch, Eberhard
    DISCRETE MATHEMATICS, 2014, 328 : 42 - 53
  • [7] Some new refinements of Jensen's inequality and their applications
    Xu, Kejun
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 147 - 151
  • [8] Refinements of discrete and integral Jensen inequalities with Jensen's gap
    Horvath, Laszlo
    AEQUATIONES MATHEMATICAE, 2024, 98 (02) : 557 - 577
  • [9] Refinements of discrete and integral Jensen inequalities with Jensen’s gap
    László Horváth
    Aequationes mathematicae, 2024, 98 : 557 - 577
  • [10] A new bound for the Jensen gap pertaining twice differentiable functions with applications
    Shahid Khan
    Muhammad Adil Khan
    Saad Ihsan Butt
    Yu-Ming Chu
    Advances in Difference Equations, 2020