Let (μ,Ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$( \mu,\Omega ) $\end{document} be a probability measure space. We consider the so-called ‘Jensen gap’ J(φ,μ,f)=∫Ωφ(f(s))dμ(s)−φ(∫Ωf(s)dμ(s))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ J ( \varphi,\mu,f ) = \int_{\Omega}\varphi \bigl( f ( s ) \bigr)\,d\mu ( s ) -\varphi \biggl( \int_{\Omega }f ( s )\,d\mu ( s ) \biggr) $$\end{document} for some classes of functions φ. Several new estimates and equalities are derived and compared with other results of this type. Especially the case when φ has a Taylor expansion is treated and the corresponding discrete results are pointed out.
机构:
Calif State Univ Fresno, Dept Econ, 5245 N Backer Ave M-S PB20, Fresno, CA 93740 USACalif State Univ Fresno, Dept Econ, 5245 N Backer Ave M-S PB20, Fresno, CA 93740 USA