Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization

被引:0
|
作者
Du, Junfu [1 ]
Zhong, Mingjun [2 ]
机构
[1] Dalian Ocean Univ, Sch Sci, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, Dept Biomed Engn, Dalian 116024, Peoples R China
关键词
Pseudo-marginal Markov Chain Monte Carlo; Nonnegative matrix factorization; Reversible jump Markov Chain Monte Carlo; Importance sampling; MODEL ORDER SELECTION; LIKELIHOOD;
D O I
10.1007/s11063-016-9542-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A pseudo-marginal Markov chain Monte Carlo (PMCMC) method is proposed for nonnegative matrix factorization (NMF). The sampler jointly simulates the joint posterior distribution for the nonnegative matrices and the matrix dimensions which indicate the number of the nonnegative components in the NMF model. We show that the PMCMC sampler is a generalization of a version of the reversible jump Markov chain Monte Carlo. An illustrative synthetic data was used to demonstrate the ability of the proposed PMCMC sampler in inferring the nonnegative matrices and as well as the matrix dimensions. The proposed sampler was also applied to a nuclear magnetic resonance spectroscopy data to infer the number of nonnegative components.
引用
收藏
页码:553 / 562
页数:10
相关论文
共 50 条
  • [1] Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization
    Junfu Du
    Mingjun Zhong
    [J]. Neural Processing Letters, 2017, 45 : 553 - 562
  • [2] CONVERGENCE PROPERTIES OF PSEUDO-MARGINAL MARKOV CHAIN MONTE CARLO ALGORITHMS
    Andrieu, Christophe
    Vihola, Matti
    [J]. ANNALS OF APPLIED PROBABILITY, 2015, 25 (02): : 1030 - 1077
  • [3] Pseudo-marginal hamiltonian monte carlo
    Alenlöv, Johan
    Doucet, Arnaud
    Lindsten, Fredrik
    [J]. Journal of Machine Learning Research, 2021, 22 : 1 - 45
  • [4] Pseudo-Marginal Hamiltonian Monte Carlo
    Alenlov, Johan
    Doucet, Arnaud
    Lindsten, Fredrik
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [5] Pseudo-marginal approximation to the free energy in a micro-macro Markov chain Monte Carlo method
    Vandecasteele, Hannes
    Samaey, Giovanni
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (10):
  • [6] Estimation of value-at-risk for conduct risk losses using pseudo-marginal Markov chain Monte Carlo
    Mitic, Peter
    Hu, Jiaqi
    [J]. JOURNAL OF OPERATIONAL RISK, 2019, 14 (04): : 1 - 42
  • [7] THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS
    Andrieu, Christophe
    Roberts, Gareth O.
    [J]. ANNALS OF STATISTICS, 2009, 37 (02): : 697 - 725
  • [8] Multi-fidelity Monte Carlo: a pseudo-marginal approach
    Cai, Diana
    Adams, Ryan P.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] A pseudo-marginal sequential Monte Carlo online smoothing algorithm
    Gloaguen, Pierre
    Le Corff, Sylvain
    Olsson, Jimmy
    [J]. BERNOULLI, 2022, 28 (04) : 2606 - 2633
  • [10] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    [J]. STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454