CONVERGENCE PROPERTIES OF PSEUDO-MARGINAL MARKOV CHAIN MONTE CARLO ALGORITHMS

被引:54
|
作者
Andrieu, Christophe [1 ]
Vihola, Matti [2 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
来源
ANNALS OF APPLIED PROBABILITY | 2015年 / 25卷 / 02期
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
Asymptotic variance; geometric ergodicity; Markov chain Monte Carlo; polynomial ergodicity; pseudo-marginal algorithm; METROPOLIS ALGORITHMS; MCMC ALGORITHMS; RATES; HASTINGS; ERGODICITY;
D O I
10.1214/14-AAP1022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms (Andrieu and Roberts [Ann. Statist. 37 (2009) 697-725]). We find that the asymptotic variance of the pseudo-marginal algorithm is always at least as large as that of the marginal algorithm. We show that if the marginal chain admits a (right) spectral gap and the weights (normalised estimates of the target density) are uniformly bounded, then the pseudo-marginal chain has a spectral gap. In many cases, a similar result holds for the absolute spectral gap, which is equivalent to geometric ergodicity. We consider also unbounded weight distributions and recover polynomial convergence rates in more specific cases, when the marginal algorithm is uniformly ergodic or an independent Metropolis Hastings or a random-walk Metropolis targeting a super-exponential density with regular contours. Our results on geometric and polynomial convergence rates imply central limit theorems. We also prove that under general conditions, the asymptotic variance of the pseudo-marginal algorithm converges to the asymptotic variance of the marginal algorithm if the accuracy of the estimators is increased.
引用
收藏
页码:1030 / 1077
页数:48
相关论文
共 50 条
  • [1] Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization
    Junfu Du
    Mingjun Zhong
    [J]. Neural Processing Letters, 2017, 45 : 553 - 562
  • [2] Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization
    Du, Junfu
    Zhong, Mingjun
    [J]. NEURAL PROCESSING LETTERS, 2017, 45 (02) : 553 - 562
  • [3] Pseudo-marginal hamiltonian monte carlo
    Alenlöv, Johan
    Doucet, Arnaud
    Lindsten, Fredrik
    [J]. Journal of Machine Learning Research, 2021, 22 : 1 - 45
  • [4] Pseudo-Marginal Hamiltonian Monte Carlo
    Alenlov, Johan
    Doucet, Arnaud
    Lindsten, Fredrik
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [5] Pseudo-marginal approximation to the free energy in a micro-macro Markov chain Monte Carlo method
    Vandecasteele, Hannes
    Samaey, Giovanni
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (10):
  • [6] Estimation of value-at-risk for conduct risk losses using pseudo-marginal Markov chain Monte Carlo
    Mitic, Peter
    Hu, Jiaqi
    [J]. JOURNAL OF OPERATIONAL RISK, 2019, 14 (04): : 1 - 42
  • [7] THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS
    Andrieu, Christophe
    Roberts, Gareth O.
    [J]. ANNALS OF STATISTICS, 2009, 37 (02): : 697 - 725
  • [8] Multi-fidelity Monte Carlo: a pseudo-marginal approach
    Cai, Diana
    Adams, Ryan P.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] A pseudo-marginal sequential Monte Carlo online smoothing algorithm
    Gloaguen, Pierre
    Le Corff, Sylvain
    Olsson, Jimmy
    [J]. BERNOULLI, 2022, 28 (04) : 2606 - 2633
  • [10] Convergence of concurrent Markov chain Monte-Carlo algorithms
    Malfait, M
    Roose, D
    [J]. CONCURRENCY-PRACTICE AND EXPERIENCE, 1996, 8 (03): : 167 - 189