Pseudo-marginal approximation to the free energy in a micro-macro Markov chain Monte Carlo method

被引:0
|
作者
Vandecasteele, Hannes [1 ,2 ]
Samaey, Giovanni [2 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 N Charles St Baltimore, Maryland, NY 21218 USA
[2] Dept Comp Sci, KU Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 10期
关键词
DYNAMICS; CONVERGENCE; COMPUTATION; EFFICIENCY; ALGORITHM; GROWTH; MCMC;
D O I
10.1063/5.0199562
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a generalized micro-macro Markov chain Monte Carlo (mM-MCMC) method with pseudo-marginal approximation to the free energy that is able to accelerate sampling of the microscopic Gibbs distributions when there is a time-scale separation between the macroscopic dynamics of a reaction coordinate and the remaining microscopic degrees of freedom. The mM-MCMC method attains this efficiency by iterating four steps: (i) propose a new value of the reaction coordinate, (ii) accept or reject the macroscopic sample, (iii) run a biased simulation that creates a microscopic molecular instance that lies close to the newly sampled macroscopic reaction coordinate value, and (iv) microscopic accept/reject step for the new microscopic sample. In the present paper, we eliminate the main computational bottleneck of earlier versions of this method: the necessity to have an accurate approximation of free energy. We show that the introduction of a pseudo-marginal approximation significantly reduces the computational cost of the microscopic accept/reject step while still providing unbiased samples. We illustrate the method's behavior on several molecular systems with low-dimensional reaction coordinates.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization
    Junfu Du
    Mingjun Zhong
    [J]. Neural Processing Letters, 2017, 45 : 553 - 562
  • [2] CONVERGENCE PROPERTIES OF PSEUDO-MARGINAL MARKOV CHAIN MONTE CARLO ALGORITHMS
    Andrieu, Christophe
    Vihola, Matti
    [J]. ANNALS OF APPLIED PROBABILITY, 2015, 25 (02): : 1030 - 1077
  • [3] Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization
    Du, Junfu
    Zhong, Mingjun
    [J]. NEURAL PROCESSING LETTERS, 2017, 45 (02) : 553 - 562
  • [4] Computational efficiency study of a micro-macro Markov chain Monte Carlo method for molecular dynamics
    Vandecasteele, Hannes
    Samaey, Giovanni
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 474
  • [5] Pseudo-marginal hamiltonian monte carlo
    Alenlöv, Johan
    Doucet, Arnaud
    Lindsten, Fredrik
    [J]. Journal of Machine Learning Research, 2021, 22 : 1 - 45
  • [6] Pseudo-Marginal Hamiltonian Monte Carlo
    Alenlov, Johan
    Doucet, Arnaud
    Lindsten, Fredrik
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [7] A MICRO-MACRO MARKOV CHAIN MONTE CARLO METHOD FOR MOLECULAR DYNAMICS USING REACTION COORDINATE PROPOSALS
    Vandecasteele, Hannes S.
    Samaey, Giovanni
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (02): : B107 - B138
  • [8] Estimation of value-at-risk for conduct risk losses using pseudo-marginal Markov chain Monte Carlo
    Mitic, Peter
    Hu, Jiaqi
    [J]. JOURNAL OF OPERATIONAL RISK, 2019, 14 (04): : 1 - 42
  • [9] THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS
    Andrieu, Christophe
    Roberts, Gareth O.
    [J]. ANNALS OF STATISTICS, 2009, 37 (02): : 697 - 725
  • [10] Multi-fidelity Monte Carlo: a pseudo-marginal approach
    Cai, Diana
    Adams, Ryan P.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,