Uniqueness and numerical scheme for the Robin coefficient identification of the time-fractional diffusion equation

被引:7
|
作者
Wang, Jun-Gang [1 ]
Ran, Yu-Hong [2 ]
Yuan, Zhan-Bin [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian, Shaanxi, Peoples R China
[2] Northwest Univ, Sch Math, Ctr Nonlinear Studies, Xian, Shaanxi, Peoples R China
关键词
Inverse problem; Robin coefficient; Fractional diffusion equation; Uniqueness;
D O I
10.1016/j.camwa.2018.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem of determining the Robin coefficient of fractional diffusion equation from a nonlocal boundary condition. Based on the property of Caputo fractional derivative, the uniqueness is proved. The numerical schemes for the direct problem and the inverse problem are developed. Three examples are given to show the effectiveness of the presented methods. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4107 / 4114
页数:8
相关论文
共 50 条
  • [21] Identification of the diffusion coefficient in a time fractional diffusion equation
    Shayegan, Amir Hossein Salehi
    Zakeri, Ali
    Bodaghi, Soheila
    Heshmati, M.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (02): : 299 - 306
  • [22] Uniqueness and Numerical Method for Determining a Spatial Source Term in a Time-Fractional Diffusion Wave Equation
    Luo, Yuhua
    Wei, Ting
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [23] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [24] Numerical computation for backward time-fractional diffusion equation
    Dou, F. F.
    Hon, Y. C.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 40 : 138 - 146
  • [25] Numerical solution to loaded difference scheme for time-fractional diffusion equation with temporal loads
    Kumari, Shweta
    Mehra, Mani
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2025, 63 (01) : 105 - 131
  • [26] An efficient high order numerical scheme for the time-fractional diffusion equation with uniform accuracy
    Cao, Junying
    Tan, Qing
    Wang, Zhongqing
    Wang, Ziqiang
    AIMS MATHEMATICS, 2023, 8 (07): : 16031 - 16061
  • [27] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    The European Physical Journal Plus, 134
  • [28] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [30] Identification of the Initial Value for a Time-Fractional Diffusion Equation
    Yang, Fan
    Gao, Yin-Xia
    Li, Dun-Gang
    Li, Xiao-Xiao
    SYMMETRY-BASEL, 2022, 14 (12):