Boost particle swarm optimization with fitness estimation

被引:7
|
作者
Li, Lu [1 ]
Liang, Yanchun [1 ,2 ]
Li, Tingting [1 ]
Wu, Chunguo [1 ]
Zhao, Guozhong [3 ]
Han, Xiaosong [1 ,3 ]
机构
[1] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Natl Educ Minist, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Zhuhai Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Zhuhai Coll, Zhuhai 519041, Peoples R China
[3] CNPC, Daqing Oilfield Explorat & Dev Res Inst, Daqing Oilfield Personnel Dev Inst, Daqing 163000, Peoples R China
基金
中国国家自然科学基金;
关键词
Particle swarm optimization; Support vector regression; Affinity propagation clustering algorithm; Fitness estimation; ALGORITHM;
D O I
10.1007/s11047-018-9699-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is well known that the classical particle swarm optimization (PSO) is time-consuming when used to solve complex fitness optimization problems. In this study, we perform in-depth research on fitness estimation based on the distance between particles and affinity propagation clustering. In addition, support vector regression is employed as a surrogate model for estimating fitness values instead of using the objective function. The particle swarm optimization algorithm based on affinity propagation clustering, the efficient particle swarm optimization algorithm, and the particle swarm optimization algorithm based on support vector regression machine are then proposed. The experimental results show that the new algorithms significantly reduce the computational counts of the objective function. Compared with the classical PSO, the optimization results exhibit no loss of accuracy or stability.
引用
收藏
页码:229 / 247
页数:19
相关论文
共 50 条
  • [31] Particle swarm optimization for power system state estimation
    Tungadio, D. H.
    Numbi, B. P.
    Siti, M. W.
    Jimoh, A. A.
    NEUROCOMPUTING, 2015, 148 : 175 - 180
  • [32] A hybrid particle swarm optimization for distribution state estimation
    Naka, S
    Genji, T
    Yura, T
    Fukuyama, Y
    2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 635 - 635
  • [33] Multiobjective particle swarm optimization for parameter estimation in hydrology
    Gill, M. Kashif
    Kaheil, Yasir H.
    Khalil, Abedalrazq
    McKee, Mac
    Bastidas, Luis
    WATER RESOURCES RESEARCH, 2006, 42 (07)
  • [34] A hybrid particle swarm optimization for distribution state estimation
    Naka, S
    Genji, T
    Yura, T
    Fukuyama, Y
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (01) : 60 - 68
  • [35] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [36] An estimation of distribution improved particle swarm optimization algorithm
    Kulkarni, R. V.
    Venayagamoorthy, G. K.
    PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING, 2007, : 539 - 544
  • [37] Optimal Design of Multiband Microstrip Antennas by Self-Renewing Fitness Estimation of Particle Swarm Optimization Algorithm
    Fan, Xiaohong
    Tian, Yubo
    Zhao, Yi
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2019, 2019
  • [38] Estimation of structural stiffness with the use of Particle Swarm Optimization
    Mazur, Michal R.
    Galewski, Marek A.
    Kalinski, Krzysztof J.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2021, 18 (02) : 1 - 18
  • [39] Grid Impedance Estimation Based on Particle Swarm Optimization
    Lin, Kewen
    Xiao, Fei
    Jie, Guisheng
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 573 - 576
  • [40] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    PHYSICAL REVIEW D, 2012, 85 (12):