Nontrivial solution of a semilinear Schrodinger equation

被引:92
|
作者
Troestler, C
Willem, M
机构
[1] Institut Mathématique, Univ. Catholique de Louvain, 1348 Louvain-la-Neuve
关键词
D O I
10.1080/03605309608821233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with strongly indefinite functionals whose gradients are Fredholm operators of index 0 and map weakly convergent sequences to weakly convergent sequences. We show bow these results apply to a Z(N)-invariant semilinear Schrodinger equation on R(N).
引用
收藏
页码:1431 / 1449
页数:19
相关论文
共 50 条
  • [31] Strang splitting for a semilinear Schrodinger equation with damping and forcing
    Jahnke, Tobias
    Mikl, Marcel
    Schnaubelt, Roland
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1051 - 1071
  • [32] Multi-bump Solutions for a Semilinear Schrodinger Equation
    Lin, Lishan
    Liu, Zhaoli
    Chen, Shaowei
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) : 1659 - 1689
  • [33] On multiple solutions of a semilinear Schrodinger equation with periodic potential
    Batkam, Cyril Joel
    Colin, Fabrice
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 84 : 39 - 49
  • [34] The direct and inverse scattering problem for the semilinear Schrodinger equation
    Furuya, Takashi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (03):
  • [35] NONTRIVIAL PERIODIC SOLUTIONS OF A SEMILINEAR WAVE EQUATION WITHOUT ASSUMPTION OF MONOTONICITY
    LI Shujie (Institute of Mathematics
    Systems Science and Mathematical Sciences, 1992, (03) : 193 - 204
  • [36] Three Nontrivial Solutions of Boundary Value Problems for Semilinear Δγ-Laplace Equation
    Duong Trong Luyen
    Le Thi Hong Hanh
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [37] Existence of a nontrivial solution for Choquard's equation
    Zhang Zhengjie
    Kuepper, Tassilo
    Hu Ailian
    Xia Hongqiang
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (03) : 460 - 468
  • [38] SOLUTION OF THE SCHRODINGER EQUATION BY LABVIEW
    Duran-Avendano, Oscar
    Ramirez-Martin, Carlos
    AVANCES EN CIENCIAS E INGENIERIA, 2012, 3 (04): : 177 - 184
  • [39] A local solution of the Schrodinger equation
    Grigoriu, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (43): : 8669 - 8676
  • [40] On the solution of the nonlinear Schrodinger equation
    Zayed, EME
    Zedan, HA
    CHAOS SOLITONS & FRACTALS, 2003, 16 (01) : 133 - 145