Three Nontrivial Solutions of Boundary Value Problems for Semilinear Δγ-Laplace Equation

被引:1
|
作者
Duong Trong Luyen [1 ,2 ]
Le Thi Hong Hanh [3 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Hoa Lu Univ, Dept Math, Ninh Binh City, Vietnam
关键词
Semilinear degenerate elliptic equations; Morse theory; Three solutions; Multiple solutions; MULTIPLE SOLUTIONS; EXISTENCE; LAPLACIAN;
D O I
10.5269/bspm.45841
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the multiplicity of weak solutions to the boundary value problem Delta(gamma)u + f(x, u) = 0 in Omega, u = 0 on partial derivative Omega, where Omega is a bounded domain with smooth boundary in R-N (N >= 2) and Delta(gamma) is the subelliptic operator of the type Delta(gamma) := Sigma(N)(j=1) partial derivative(xj) (gamma(2)(j)partial derivative(xj)), partial derivative(xj) := partial derivative/partial derivative(xj), gamma = (gamma(1), gamma(2), ..., gamma(N)), the nonlinearity f(x, xi) is subcritical growth and may be not satisfy the Ambrosetti-Rabinowitz (AR) condition. We establish the existence of three nontrivial solutions by using Morse theory.
引用
收藏
页数:10
相关论文
共 50 条