Energy market prediction with novel long short-term memory network: Case study of energy futures index volatility

被引:19
|
作者
Zhang, Lihong [1 ]
Wang, Jun [1 ]
Wang, Bin [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Sci, Inst Financial Math & Financial Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy market prediction; Commodity energy futures; Stochastic time strength; Deep learning prediction; Long and short-term memory; Multi-scale complex synchronization; NATURAL-GAS CONSUMPTION; FINANCIAL TIME-SERIES; CRUDE-OIL PRICE; NEURAL-NETWORK; ANN; MODEL; SYSTEM; RISK; BEHAVIORS; FORECASTS;
D O I
10.1016/j.energy.2020.118634
中图分类号
O414.1 [热力学];
学科分类号
摘要
Energy futures that is no less influential than the spot market is an important part of commodity futures. A novel ST-LSTM model based on long short-term memory network (LSTM) model is proposed to improve the prediction accuracy of energy futures index. In the process of establishing this model, stochastic time strength function that represents different effects on current and future information at various times is introduced into weights and errors of LSTM model, which makes the model more consistent with the randomness and volatility of futures markets. The empirical research, including six evaluation prediction criteria and fitting curve methods, verifies that the prediction accuracy is improved by ST-LSTM model. Furthermore, a new multi-scale complex synchronization method q-MCCS is pro-posed to evaluate the models. The ST-LSTM model is also utilized to predict the energy futures price of different time interval lengths, such as one month, three months, six months and one year, which demonstrates that the longer the time interval length is and the less volatile the energy futures price is, the superior the forecast effect is. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] ecTALK: Energy Efficient Coherent Transprecision Accelerators - The Bidirectional Long Short-Term Memory Neural Network Case
    Diamantopoulos, Dionysios
    Giefers, Heiner
    Hagleitner, Christoph
    PROCEEDINGS 2018 IEEE SYMPOSIUM IN LOW-POWER AND HIGH-SPEED CHIPS (COOL CHIPS), 2018,
  • [32] VERY SHORT-TERM ENERGY PREDICTION FOR A DISTRIBUTED PV SYSTEM USING LONG SHORT-TERM MEMORY ARTIFICIAL INTELLIGENT METHOD
    使用長短時記憶人工智慧方法預估極短時分散式太陽能系統發電成效
    Chao, R.-M. (rmchao@mail.ncku.edu.tw), 1600, Taiwan Society of Naval Architects and Marine Engineers (39): : 197 - 204
  • [33] Network Security Situation Prediction Based on Long Short-Term Memory Network
    Shang, Li
    Zhao, Wei
    Zhang, Jiaju
    Fu, Qiang
    Zhao, Qian
    Yang, Yang
    2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,
  • [34] Combined Long Short-Term Memory Network-Based Short-Term Prediction of Solar Irradiance
    Madhiarasan, Manoharan
    Louzazni, Mohamed
    International Journal of Photoenergy, 2022, 2022
  • [35] Combined Long Short-Term Memory Network-Based Short-Term Prediction of Solar Irradiance
    Madhiarasan, Manoharan
    Louzazni, Mohamed
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2022, 2022
  • [36] Prediction of conotoxin type based on long short-term memory network
    Wang, Feng
    Chang, Shan
    Wei, Dashun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6700 - 6708
  • [37] Application of long short-term memory network for wellbore trajectory prediction
    Huang, Meng
    Zhou, Kai
    Wang, Laizhi
    Zhou, Jianxin
    PETROLEUM SCIENCE AND TECHNOLOGY, 2024, 42 (22) : 3185 - 3204
  • [38] Prediction of Travel Purpose Based on the Long Short-Term Memory Network
    Zhang, Yan
    Zhao, De
    CICTP 2023: INNOVATION-EMPOWERED TECHNOLOGY FOR SUSTAINABLE, INTELLIGENT, DECARBONIZED, AND CONNECTED TRANSPORTATION, 2023, : 1029 - 1039
  • [39] Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building
    Ding, Zhikun
    Chen, Weilin
    Hu, Ting
    Xu, Xiaoxiao
    APPLIED ENERGY, 2021, 288
  • [40] Meta-LSTR: Meta-Learning with Long Short-Term Transformer for futures volatility prediction
    Chen, Yunzhu
    Ye, Neng
    Zhang, Wenyu
    Fan, Jiaqi
    Mumtaz, Shahid
    Li, Xiangming
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265