Energy market prediction with novel long short-term memory network: Case study of energy futures index volatility

被引:19
|
作者
Zhang, Lihong [1 ]
Wang, Jun [1 ]
Wang, Bin [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Sci, Inst Financial Math & Financial Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy market prediction; Commodity energy futures; Stochastic time strength; Deep learning prediction; Long and short-term memory; Multi-scale complex synchronization; NATURAL-GAS CONSUMPTION; FINANCIAL TIME-SERIES; CRUDE-OIL PRICE; NEURAL-NETWORK; ANN; MODEL; SYSTEM; RISK; BEHAVIORS; FORECASTS;
D O I
10.1016/j.energy.2020.118634
中图分类号
O414.1 [热力学];
学科分类号
摘要
Energy futures that is no less influential than the spot market is an important part of commodity futures. A novel ST-LSTM model based on long short-term memory network (LSTM) model is proposed to improve the prediction accuracy of energy futures index. In the process of establishing this model, stochastic time strength function that represents different effects on current and future information at various times is introduced into weights and errors of LSTM model, which makes the model more consistent with the randomness and volatility of futures markets. The empirical research, including six evaluation prediction criteria and fitting curve methods, verifies that the prediction accuracy is improved by ST-LSTM model. Furthermore, a new multi-scale complex synchronization method q-MCCS is pro-posed to evaluate the models. The ST-LSTM model is also utilized to predict the energy futures price of different time interval lengths, such as one month, three months, six months and one year, which demonstrates that the longer the time interval length is and the less volatile the energy futures price is, the superior the forecast effect is. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Long Short-Term Memory (LSTM) Deep Neural Networks in Energy Appliances Prediction
    Kouziokas, Georgios N.
    2019 PANHELLENIC CONFERENCE ON ELECTRONICS AND TELECOMMUNICATIONS (PACET2019), 2019, : 162 - 166
  • [22] STOCK MARKET PREDICTION USING LONG SHORT-TERM MEMORY (LSTM)
    Abu Nadif, Mohammad
    Samin, Towhidur Rahman
    Islam, Tohedul
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [23] Prediction of Continuous Time Series Leaf Area Index Based on Long Short-Term Memory Network : a Case Study of Winter Wheat
    Long Ze-hao
    Qin Qi-ming
    Zhang Tian-yuan
    Xu Wei
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (03) : 898 - 904
  • [24] A novel market efficiency index for energy futures and their term structure risk premiums
    Kuruppuarachchi, Duminda
    Premachandra, I. M.
    Roberts, Helen
    ENERGY ECONOMICS, 2019, 77 : 23 - 33
  • [25] Energy Efficient Ultra-Dense Network Using Long Short-Term Memory
    Son, Junwon
    Kim, Seungnyun
    Shim, Byonghyo
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [26] Long Short-Term Memory Wavelet Neural Network for Renewable Energy Generation Forecasting
    Vivas, Eliana
    Allende-Cid, Hector
    de Guenni, Lelys Bravo
    Bariviera, Aurelio F.
    Salas, Rodrigo
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2025, 2025 (01)
  • [27] Prediction model of energy market by long short term memory with random system and complexity evaluation
    Yang, Yu
    Wang, Jun
    Wang, Bin
    APPLIED SOFT COMPUTING, 2020, 95
  • [28] A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network
    Kong, Feng
    Song, Jianbo
    Yang, Zhongzhi
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (43) : 64983 - 64998
  • [29] A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network
    Feng Kong
    Jianbo Song
    Zhongzhi Yang
    Environmental Science and Pollution Research, 2022, 29 : 64983 - 64998
  • [30] Predicting the Volatility of Highway Construction Cost Index Using Long Short-Term Memory
    Cao, Yang
    Ashuri, Baabak
    JOURNAL OF MANAGEMENT IN ENGINEERING, 2020, 36 (04)