BOUNDARY ELEMENT METHODS WITH WEAKLY IMPOSED BOUNDARY CONDITIONS

被引:4
|
作者
Betcke, Timo [1 ]
Burman, Erik [1 ]
Scroggs, Matthew W. [1 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2019年 / 41卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
boundary element method; weak boundary conditions; mixed boundary conditions; Robin conditions; Calderon projection; DECOMPOSITION;
D O I
10.1137/18M119625X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider boundary element methods where the Calderon projector is used for the system matrix and boundary conditions are weakly imposed using a particular variational boundary operator designed using techniques from augmented Lagrangian methods. Regardless of the boundary conditions, both the primal trace variable and the flux are approximated. We focus on the imposition of Dirichlet, mixed Dirichlet-Neumann, and Robin conditions. A salient feature of the Robin condition is that the conditioning of the system is robust also for stiff boundary conditions. The theory is illustrated by a series of numerical examples.
引用
收藏
页码:A1357 / A1384
页数:28
相关论文
共 50 条
  • [41] VOLUME INTEGRALS FOR BOUNDARY ELEMENT METHODS
    ALLGOWER, EL
    GEORG, K
    WIDMANN, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 38 (1-3) : 17 - 29
  • [42] Recent Advances in Boundary Element Methods
    Langer, Ulrich
    Steinbach, Olaf
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (02) : 297 - 299
  • [43] CONVERGENCE OF VORTEX WITH BOUNDARY ELEMENT METHODS
    P.W. Zhang(Department of Mathematics
    Journal of Computational Mathematics, 1997, (02) : 127 - 137
  • [44] Boundary element methods for polymer analysis
    Syngellakis, S
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2003, 27 (02) : 125 - 135
  • [45] BOUNDARY ELEMENT METHODS FOR POTENTIAL PROBLEMS
    BREBBIA, CA
    DOMINGUEZ, J
    APPLIED MATHEMATICAL MODELLING, 1977, 1 (07) : 372 - 378
  • [46] Equivariant preconditioners for boundary element methods
    Tausch, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01): : 90 - 99
  • [47] ON ADAPTIVE WAVELET BOUNDARY ELEMENT METHODS
    Harbrecht, H.
    Utzinger, M.
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (01) : 90 - 109
  • [48] Blake, bubbles and boundary element methods
    Ohl, Siew-Wan
    Rahim, Md Haiqal Haqim Bin Md
    Klaseboer, Evert
    Khoo, Boo Cheong
    IMA JOURNAL OF APPLIED MATHEMATICS, 2020, 85 (02) : 190 - 213
  • [49] Symmetric Galerkin boundary element methods
    Ecole Polytechnique, Palaiseau, France
    Appl Mech Rev, 11 (669-704):
  • [50] Benchmark problems for boundary element methods
    Schulz, H
    Steinbach, O
    Wendland, WL
    BOUNDARY ELEMENT TOPICS, 1997, : 491 - 496