ANALYSIS OF A MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA

被引:23
|
作者
Formaggia, Luca [1 ]
Scotti, Anna [1 ]
Sottocasa, Federica [1 ]
机构
[1] Politecn Milan, MOX Dept Matemat, Via Bonardi 9, I-20133 Milan, Italy
关键词
Flow in porous media; fracture networks; mimetic finite difference; VIRTUAL ELEMENT METHOD; DIFFUSION-PROBLEMS; NONMATCHING GRIDS; POLYHEDRAL MESHES; 2-PHASE FLOW; MODEL; DISCRETIZATION; NETWORKS; CONVERGENCE;
D O I
10.1051/m2an/2017028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the mixed formulation for Darcy's flow in fractured media. We give a well-posedness result that does not rely on the imposition of pressure in part of the boundary of the fracture network, thus including a fully immersed fracture network. We present and analyze a mimetic finite difference formulation for the problem, providing convergence results and numerical tests.
引用
收藏
页码:595 / 630
页数:36
相关论文
共 50 条
  • [41] A time-stepping finite element method for analysis of contaminant transport in fractured porous media
    Leo, CJ
    Booker, JR
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1996, 20 (12) : 847 - 864
  • [42] An ELLAM approximation for highly compressible multicomponent flows in porous media
    Wang, H
    Liang, D
    Ewing, RE
    Lyons, SL
    Qin, G
    COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) : 227 - 251
  • [43] An ELLAM Approximation for Highly Compressible Multicomponent Flows in Porous Media
    H. Wang
    D. Liang
    R.E. Ewing
    S.L. Lyons
    G. Qin
    Computational Geosciences, 2002, 6 : 227 - 251
  • [44] A Mimetic Finite-Difference Scheme for Convection of Multicomponent Fluid in a Porous Medium
    Tsybulin, Vyacheslav
    Nemtsev, Andrew
    Karasoezen, Buelent
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, PROCEEDINGS, 2009, 5743 : 322 - +
  • [45] Multiscale extended finite element method for deformable fractured porous media
    Xu, Fanxiang
    Hajibeygi, Hadi
    Sluys, Lambertus J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 436
  • [46] An Extended Finite Element Model for Fluid Flow in Fractured Porous Media
    Liu, Fei
    Zhao, Li-qiang
    Liu, Ping-li
    Luo, Zhi-feng
    Li, Nian-yin
    Wang, Pei-shan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [47] Coupling Finite Elements for Modelling Fluid Flow in Fractured Porous Media
    Vafajou, B.
    Dias-Da-Costa, D.
    Bitencourt, L. A. G., Jr.
    Manzoli, O. L.
    PROCEEDINGS OF THE 25TH AUSTRALASIAN CONFERENCE ON MECHANICS OF STRUCTURES AND MATERIALS (ACMSM25), 2020, 37 : 361 - 371
  • [48] Numerical approximation for hybrid-dimensional flow and transport in fractured porous media
    Zhao, Jijing
    Rui, Hongxing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (03)
  • [49] A HYBRID HIGH-ORDER METHOD FOR DARCY FLOWS IN FRACTURED POROUS MEDIA
    Chave, Florent
    Di Pietro, Danwle A.
    Formaggia, Luca
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A1063 - A1094
  • [50] Staggered DG Method with Small Edges for Darcy Flows in Fractured Porous Media
    Zhao, Lina
    Kim, Dohyun
    Park, Eun-Jae
    Chung, Eric
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (03)