ANALYSIS OF A MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA

被引:23
|
作者
Formaggia, Luca [1 ]
Scotti, Anna [1 ]
Sottocasa, Federica [1 ]
机构
[1] Politecn Milan, MOX Dept Matemat, Via Bonardi 9, I-20133 Milan, Italy
关键词
Flow in porous media; fracture networks; mimetic finite difference; VIRTUAL ELEMENT METHOD; DIFFUSION-PROBLEMS; NONMATCHING GRIDS; POLYHEDRAL MESHES; 2-PHASE FLOW; MODEL; DISCRETIZATION; NETWORKS; CONVERGENCE;
D O I
10.1051/m2an/2017028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the mixed formulation for Darcy's flow in fractured media. We give a well-posedness result that does not rely on the imposition of pressure in part of the boundary of the fracture network, thus including a fully immersed fracture network. We present and analyze a mimetic finite difference formulation for the problem, providing convergence results and numerical tests.
引用
收藏
页码:595 / 630
页数:36
相关论文
共 50 条
  • [31] Gradient discretization of hybrid dimensional Darcy flows in fractured porous media
    Konstantin Brenner
    Mayya Groza
    Cindy Guichard
    Gilles Lebeau
    Roland Masson
    Numerische Mathematik, 2016, 134 : 569 - 609
  • [32] Convergence of the mimetic finite difference and fitted mimetic finite difference method for options pricing
    Attipoe, David Sena
    Tambue, Antoine
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 401 (401)
  • [33] A SYSTEMATIC METHOD TO CONSTRUCT MIMETIC FINITE-DIFFERENCE SCHEMES FOR INCOMPRESSIBLE FLOWS
    Sorgentone, Chiara
    Favini, Bernardo
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (03) : 419 - 436
  • [34] Fractured porous media
    Herrmann, Hans Juergen
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2013, 107 (03): : 376 - 377
  • [35] A Hybrid Finite Volume-Finite Element Method for Modeling Flows in Fractured Media
    Chernyshenko, Alexey
    Olshahskii, Maxim
    Vassilevski, Yuri
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS, 2017, 200 : 527 - 535
  • [36] Analysis and numerical approximation of Brinkman regularization of two-phase flows in porous media
    G. M. Coclite
    S. Mishra
    N. H. Risebro
    F. Weber
    Computational Geosciences, 2014, 18 : 637 - 659
  • [37] Analysis and numerical approximation of Brinkman regularization of two-phase flows in porous media
    Coclite, G. M.
    Mishra, S.
    Risebro, N. H.
    Weber, F.
    COMPUTATIONAL GEOSCIENCES, 2014, 18 (05) : 637 - 659
  • [38] Finite-difference analysis of fully dynamic problems for saturated porous media
    Boal, N.
    Gaspar, F. J.
    Lisbona, F. J.
    Vabishchevich, P. N.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1090 - 1102
  • [39] Mimetic finite difference method
    Lipnikov, Konstantin
    Manzini, Gianmarco
    Shashkov, Mikhail
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 : 1163 - 1227
  • [40] A coupled boundary element and finite element method for the analysis of flow through fractured porous media
    Fang, Sidong
    Cheng, Linsong
    Ayala, Luis F.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 152 : 375 - 390