ANALYSIS OF A MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA

被引:23
|
作者
Formaggia, Luca [1 ]
Scotti, Anna [1 ]
Sottocasa, Federica [1 ]
机构
[1] Politecn Milan, MOX Dept Matemat, Via Bonardi 9, I-20133 Milan, Italy
关键词
Flow in porous media; fracture networks; mimetic finite difference; VIRTUAL ELEMENT METHOD; DIFFUSION-PROBLEMS; NONMATCHING GRIDS; POLYHEDRAL MESHES; 2-PHASE FLOW; MODEL; DISCRETIZATION; NETWORKS; CONVERGENCE;
D O I
10.1051/m2an/2017028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the mixed formulation for Darcy's flow in fractured media. We give a well-posedness result that does not rely on the imposition of pressure in part of the boundary of the fracture network, thus including a fully immersed fracture network. We present and analyze a mimetic finite difference formulation for the problem, providing convergence results and numerical tests.
引用
收藏
页码:595 / 630
页数:36
相关论文
共 50 条
  • [1] MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA
    Antonietti, Paola F.
    Formaggia, Luca
    Scotti, Anna
    Verani, Marco
    Verzott, Nicola
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 809 - 832
  • [2] An Efficient XFEM Approximation of Darcy Flows in Arbitrarily Fractured Porous Media
    Fumagalli, Alessio
    Scotti, Anna
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2014, 69 (04): : 555 - 564
  • [3] DISCONTINUOUS GALERKIN APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA ON POLYTOPIC GRIDS
    Antonietti, Paola F.
    Facciola, Chiara
    Russo, Alessandro
    Verani, Marco
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A109 - A138
  • [4] Thermal flows in fractured porous media
    Gruais, Isabelle
    Polisevski, Dan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (03) : 789 - 805
  • [5] Discontinuous finite volume element method for Darcy flows in fractured porous media
    Li, Rui
    Zhang, Yongchao
    Wu, Jianhua
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381 (381)
  • [6] FINITE-DIFFERENCE METHODS FOR MODELING POROUS-MEDIA FLOWS
    DAS, B
    STEINBERG, S
    WEBER, S
    SCHAFFER, S
    TRANSPORT IN POROUS MEDIA, 1994, 17 (02) : 171 - 200
  • [7] Mimetic finite difference approximation of quasilinear elliptic problems
    Antonietti, Paola F.
    Bigoni, Nadia
    Verani, Marco
    CALCOLO, 2015, 52 (01) : 45 - 67
  • [8] Mimetic finite difference approximation of quasilinear elliptic problems
    Paola F. Antonietti
    Nadia Bigoni
    Marco Verani
    Calcolo, 2015, 52 : 45 - 67
  • [9] A Mixed Finite Element Approximation for Fluid Flows of Mixed Regimes in Porous Media
    Cummings, J.
    Hamilton, M.
    Kieu, T.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (07) : 1631 - 1651
  • [10] Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods
    Amaziane, Brahim
    El Ossmani, Mustapha
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 799 - 832