Modular Catalan numbers

被引:8
|
作者
Hein, Nickolas [1 ]
Huang, Jia [2 ]
机构
[1] Benedictine Coll, Dept Math & Comp Sci, Atchison, KS 66002 USA
[2] Univ Nebraska Kearney, Dept Math & Stat, Kearney, NE 68849 USA
关键词
PERMUTATIONS;
D O I
10.1016/j.ejc.2016.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Catalan number C-n enumerates parenthesizations of x(0) *. . . *x(n) where * is a binary operation. We introduce the modular Catalan number C-k,C-n to count equivalence classes of parenthesizations of x(0) * . . . * x(n) when * satisfies a k-associative law generalizing the usual associativity. This leads to a study of restricted families of Catalan objects enumerated by Ck, with emphasis on binary trees, plane trees, and Dyck paths, each avoiding certain patterns. We give closed formulas for Ck,n with two different proofs. For each n >= 0 we compute the largest size of k-associative equivalence classes and show that the number of classes with this size is a Catalan number. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 218
页数:22
相关论文
共 50 条
  • [41] SOME PROPERTIES OF CATALAN NUMBERS
    SCOVILLE, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (07): : A602 - A602
  • [42] CATALAN NUMBERS IN PROCESS SYNTHESIS
    SHOAEI, M
    SOMMERFELD, JT
    AICHE JOURNAL, 1986, 32 (11) : 1931 - 1933
  • [43] Arithmetic of weighted Catalan numbers
    Gao, Yibo
    Gu, Andrew
    JOURNAL OF NUMBER THEORY, 2021, 226 : 213 - 242
  • [44] Q-CATALAN NUMBERS
    FURLINGER, J
    HOFBAUER, J
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (02) : 248 - 264
  • [45] Catalan, Motzkin, and Riordan numbers
    Bernhart, FR
    DISCRETE MATHEMATICS, 1999, 204 (1-3) : 73 - 112
  • [46] Fedosov differentials and Catalan numbers
    Loeffler, Johannes
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (23)
  • [47] Catalan numbers with mersenne subscripts
    Koshy, Thomas
    Gao, Zhenguang
    Mathematical Scientist, 2013, 38 (02): : 86 - 91
  • [48] Alternating Convolutions of Catalan Numbers
    Wenchang Chu
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 95 - 105
  • [49] Tribinomial coefficients and Catalan numbers
    Koshy, Thomas
    Salmassi, Mohammad
    MATHEMATICAL GAZETTE, 2009, 93 (528): : 449 - 455
  • [50] Eulerian-Catalan Numbers
    Bidkhori, Hoda
    Sullivant, Seth
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):