Modular Catalan numbers

被引:8
|
作者
Hein, Nickolas [1 ]
Huang, Jia [2 ]
机构
[1] Benedictine Coll, Dept Math & Comp Sci, Atchison, KS 66002 USA
[2] Univ Nebraska Kearney, Dept Math & Stat, Kearney, NE 68849 USA
关键词
PERMUTATIONS;
D O I
10.1016/j.ejc.2016.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Catalan number C-n enumerates parenthesizations of x(0) *. . . *x(n) where * is a binary operation. We introduce the modular Catalan number C-k,C-n to count equivalence classes of parenthesizations of x(0) * . . . * x(n) when * satisfies a k-associative law generalizing the usual associativity. This leads to a study of restricted families of Catalan objects enumerated by Ck, with emphasis on binary trees, plane trees, and Dyck paths, each avoiding certain patterns. We give closed formulas for Ck,n with two different proofs. For each n >= 0 we compute the largest size of k-associative equivalence classes and show that the number of classes with this size is a Catalan number. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 218
页数:22
相关论文
共 50 条
  • [21] Noncommutative Catalan Numbers
    Arkady Berenstein
    Vladimir Retakh
    Annals of Combinatorics, 2019, 23 : 527 - 547
  • [22] Moments on Catalan numbers
    Chen, Xiaojing
    Chu, Wenchang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (02) : 311 - 316
  • [23] BOUNDS FOR THE CATALAN NUMBERS
    BOYD, AV
    FIBONACCI QUARTERLY, 1992, 30 (02): : 136 - 138
  • [24] A generalization of Catalan numbers
    Vera-Lopez, A.
    Garcia-Sanchez, M. A.
    Basova, O.
    Vera-Lopez, F. J.
    DISCRETE MATHEMATICS, 2014, 332 : 23 - 39
  • [25] Generalized Catalan numbers
    Radoux, C
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1997, 4 (02) : 289 - 292
  • [26] GENERALIZED CATALAN NUMBERS
    SANDS, AD
    DISCRETE MATHEMATICS, 1978, 21 (02) : 219 - 221
  • [27] SUPERFACTORIALS AND CATALAN NUMBERS
    ABBOTT, HL
    FRANCESCHINE, N
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (10): : 825 - 825
  • [28] On the Euler function of the Catalan numbers
    Luca, Florian
    Stanica, Pantelimon
    JOURNAL OF NUMBER THEORY, 2012, 132 (07) : 1404 - 1424
  • [29] Volterra Chain and Catalan Numbers
    V. E. Adler
    A. B. Shabat
    JETP Letters, 2018, 108 : 825 - 828
  • [30] Divisibility of generalized Catalan numbers
    Konvalinka, Matjaz
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (06) : 1089 - 1100