Modular Catalan numbers

被引:8
|
作者
Hein, Nickolas [1 ]
Huang, Jia [2 ]
机构
[1] Benedictine Coll, Dept Math & Comp Sci, Atchison, KS 66002 USA
[2] Univ Nebraska Kearney, Dept Math & Stat, Kearney, NE 68849 USA
关键词
PERMUTATIONS;
D O I
10.1016/j.ejc.2016.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Catalan number C-n enumerates parenthesizations of x(0) *. . . *x(n) where * is a binary operation. We introduce the modular Catalan number C-k,C-n to count equivalence classes of parenthesizations of x(0) * . . . * x(n) when * satisfies a k-associative law generalizing the usual associativity. This leads to a study of restricted families of Catalan objects enumerated by Ck, with emphasis on binary trees, plane trees, and Dyck paths, each avoiding certain patterns. We give closed formulas for Ck,n with two different proofs. For each n >= 0 we compute the largest size of k-associative equivalence classes and show that the number of classes with this size is a Catalan number. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 218
页数:22
相关论文
共 50 条
  • [1] Modular Fuss-Catalan numbers
    Msapato, Dixy
    DISCRETE MATHEMATICS, 2022, 345 (02)
  • [2] CATALAN NUMBERS
    GIBBS, R
    STOCKER, H
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (09): : 1066 - 1066
  • [3] Catalan Numbers
    Hajnal, Peter
    ACTA SCIENTIARUM MATHEMATICARUM, 2016, 82 (1-2): : 339 - +
  • [4] CATALAN NUMBERS
    MCCARTHY, J
    MATHEMATICAL INTELLIGENCER, 1992, 14 (02): : 5 - 5
  • [5] CATALAN NUMBERS
    HILTON, P
    PEDERSEN, J
    MATHEMATICAL INTELLIGENCER, 1993, 15 (01): : 4 - 5
  • [6] ON CATALAN NUMBERS
    Stojadinovic, Tanja
    TEACHING OF MATHEMATICS, 2015, 18 (01): : 16 - 24
  • [7] Catalan Numbers
    Federico Ardila
    The Mathematical Intelligencer, 2016, 38 : 4 - 5
  • [8] Catalan Numbers
    Ardila, Federico
    MATHEMATICAL INTELLIGENCER, 2016, 38 (02): : 4 - 5
  • [9] Parametric Catalan numbers and Catalan triangles
    He, Tian-Xiao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1467 - 1484