Quasi-isometric rigidity for PSL2(Z[1/p])

被引:8
|
作者
Taback, J [1 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1215/S0012-7094-00-10129-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:335 / 357
页数:23
相关论文
共 50 条
  • [31] Twisted conjugacy and quasi-isometric rigidity of irreducible lattices in semisimple lie groups
    T. Mubeena
    P. Sankaran
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 403 - 412
  • [32] On the finite-dimensional irreducible representations of PSL2 (Z)
    Moran, Melinda G.
    Thibault, Matthew J.
    JOURNAL OF ALGEBRA, 2007, 314 (01) : 129 - 156
  • [33] QUASI-ISOMETRIC MAPPINGS AND THE p-MODULI OF PATH FAMILIES
    Kopylov, A. P.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2016, 5 (02): : 33 - 37
  • [34] THE p-HARMONIC BOUNDARY FOR QUASI-ISOMETRIC GRAPHS AND MANIFOLDS
    Puls, Michael J.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (05) : 1615 - 1632
  • [35] The normalizer of Γ1(N) in PSL2(R)
    Kim, CH
    Koo, JK
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (11) : 5303 - 5310
  • [36] The Teichmuller distance between finite index subgroups of PSL2(Z)
    Markovic, Vladimir
    Saric, Dragomir
    GEOMETRIAE DEDICATA, 2008, 136 (01) : 145 - 165
  • [37] A Tukia-type theorem for nilpotent Lie groups and quasi-isometric rigidity of solvable groups
    Dymarz, Tullia
    Fisher, David
    Xie, Xiangdong
    ADVANCES IN MATHEMATICS, 2025, 468
  • [38] Quasi-isometric rigidity for graphs of virtually free groups with two-ended edge groups
    Shepherd, Sam
    Woodhouse, Daniel J.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (782): : 121 - 173
  • [39] Groups quasi-isometric to H2 x R
    Rieffel, EG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 44 - 60
  • [40] Incompressible, Quasi-Isometric Deformations of 2-Dimensional Domains
    Wolansky, Gershon
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (04): : 1031 - 1048