Non-Bloch band theory and bulk-edge correspondence in non-Hermitian systems

被引:28
|
作者
Yokomizo, Kazuki [1 ]
Murakami, Shuichi [1 ,2 ]
机构
[1] Tokyo Inst Technol, Dept Phys, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
[2] Tokyo Inst Technol, TIES, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
来源
基金
日本学术振兴会;
关键词
I47;
D O I
10.1093/ptep/ptaa140
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we review our non-Bloch band theory in 1D non-Hermitian tight-binding systems. In our theory, it is shown that in non-Hermitian systems, the Brillouin zone is determined so as to reproduce continuum energy bands in a large open chain. By using simple models, we explain the concept of the non-Bloch band theory and the method to calculate the Brillouin zone. In particular, for the non-Hermitian Su-Schrieffer-Heeger model, the bulk-edge correspondence can be established between the topological invariant defined from our theory and existence of the topological edge states.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Non-Hermitian bulk–boundary correspondence in quantum dynamics
    Lei Xiao
    Tianshu Deng
    Kunkun Wang
    Gaoyan Zhu
    Zhong Wang
    Wei Yi
    Peng Xue
    [J]. Nature Physics, 2020, 16 : 761 - 766
  • [22] Non-Bloch band theory in bosonic Bogoliubov-de Gennes systems
    Yokomizo, Kazuki
    Murakami, Shuichi
    [J]. PHYSICAL REVIEW B, 2021, 103 (16)
  • [23] Non-Bloch topological phases in a Hermitian system
    Shi, Kaiye
    Tian, Mingsheng
    Sun, Feng-Xiao
    Zhang, Wei
    [J]. PHYSICAL REVIEW B, 2023, 107 (20)
  • [24] Generalized bulk-boundary correspondence in periodically driven non-Hermitian systems
    Ji, Xiang
    Yang, Xiaosen
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (24)
  • [25] Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems
    Wang, Xiao-Ran
    Guo, Cui-Xian
    Kou, Su-Peng
    [J]. PHYSICAL REVIEW B, 2020, 101 (12)
  • [26] Bulk-Boundary Correspondence in a Non-Hermitian Chern Insulator
    Takane, Yositake
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (03)
  • [27] Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits
    T. Helbig
    T. Hofmann
    S. Imhof
    M. Abdelghany
    T. Kiessling
    L. W. Molenkamp
    C. H. Lee
    A. Szameit
    M. Greiter
    R. Thomale
    [J]. Nature Physics, 2020, 16 : 747 - 750
  • [28] Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone Theory
    Yang, Zhesen
    Zhang, Kai
    Fang, Chen
    Hu, Jiangping
    [J]. Physical Review Letters, 2020, 125 (22):
  • [29] Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone Theory
    Yang, Zhesen
    Zhang, Kai
    Fang, Chen
    Hu, Jiangping
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (22)
  • [30] Transport theory in non-Hermitian systems
    Yan, Qing
    Li, Hailong
    Sun, Qing-Feng
    Xie, X. C.
    [J]. PHYSICAL REVIEW B, 2024, 110 (04)