Rear Band gap Grading Strategies on Sn-Ge-Alloyed Kesterite Solar Cells

被引:32
|
作者
Andrade-Arvizu, Jacob [1 ]
Fonoll-Rubio, R. [1 ]
Sanchez, Y. [1 ]
Becerril-Romero, I [1 ]
Malerba, C. [2 ]
Valentini, M. [2 ]
Calvo-Barrio, L. [3 ,4 ,5 ]
Izquierdo-Roca, V [1 ]
Placidi, M. [1 ]
Vigil-Galan, O. [6 ]
Perez-Rodriguez, A. [1 ,5 ]
Saucedo, Edgardo [1 ]
Li-Kao, Z. Jehl [1 ]
机构
[1] Inst Recerca Energia Catalunya IREC, Barcelona 08930, Spain
[2] Agenzia Nazl Nuove Tecnol Energia & Sviluppo Econ, Casaccia Res Ctr, I-00123 Rome, Italy
[3] Univ Barcelona CCiTUB, Ctr Cient & Tecnol, Barcelona 08028, Spain
[4] Univ Barcelona CCiTUB, Dept Engn Elect & Biomed, Barcelona 08028, Spain
[5] Univ Barcelona, Dept Engn Elect & Biomed, IN2UB, Barcelona 08028, Spain
[6] Inst Politecn Nacl ESFM IPN, Escuela Super Fis & Matemat, Ciudad De Mexico 07738, Mexico
来源
ACS APPLIED ENERGY MATERIALS | 2020年 / 3卷 / 11期
基金
欧盟地平线“2020”;
关键词
chalcogenide; kesterite; Cu2Zn(Sn; Ge)Se-4; (CZTGSe); sputtering; Sn-Ge rear band gap gradient; thin films; solar cells;
D O I
10.1021/acsaem.0c01146
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kesterite solar cells are at a crossroads, and a significant breakthrough in performance is needed for this technology to stay relevant in the upcoming years. In this work, we propose to follow the proven strategy of band engineering to assist charge carrier collection taking inspiration from chalcopyrite solar cells. Using a process based on a combination of metallic precursor sputtering and chalcogen-reactive annealing, we achieve controlled cationic substitutions by partly replacing Sn by Ge, hence tailoring several rear band gap grading profiles along the absorber thickness. A complete set of results is presented, with samples ranging from pure Sn to pure Ge compounds. The formation of a rear band gap grading is determined through different characterization techniques, specifically through a combination of glow discharge optical emission and Auger spectroscopies with an advanced multiwavelength Raman spectroscopy analysis carried out at the front and back (rear) sides of the films using a lift-off process. As such, a preferential Ge enrichment toward the back of the absorber is unequivocally demonstrated in kesterite absorbers and further applied to complete devices for deliberately generating distinct rear band gap profiles, leading to an efficient back surface field that potentially enhances the carrier selectivity of the back interface. The electrical analysis of the complete devices shows a complex interplay between the benefits of band gap grading and possible Ge-related defects in the absorber. Using optimized synthesis conditions, an absolute increase in efficiency (compared to the Ge-free reference) is obtained for the record device (eta > 9%) without any antireflective coating or metallic grid. This performance enhancement is mostly ascribed to the presence of a drift electric field assisting in the carrier collection while preventing back side recombination. These results confirm the possibility of generating back band gap grading in kesterite solar cells and open the way to further development of the kesterite photovoltaic technology toward higher efficiencies through tailored band gap engineering.
引用
收藏
页码:10362 / 10375
页数:14
相关论文
共 50 条
  • [31] Numerical reproduction of a perovskite solar cell by device simulation considering band gap grading
    Minemoto, Takashi
    Kawano, Yu
    Nishimura, Takahito
    Chantana, Jakapan
    [J]. OPTICAL MATERIALS, 2019, 92 : 60 - 66
  • [32] The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application
    Khelifi, Samira
    Brammertz, Guy
    Choubrac, Leo
    Batuk, Maria
    Yang, Sheng
    Meuris, Marc
    Barreau, Nicolas
    Hadermann, Joke
    Vrielinck, Henk
    Poelman, Dirk
    Neyts, Kristiaan
    Vermang, Bart
    Lauwaert, Johan
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 219
  • [33] Low band gap polymers for organic solar cells
    Bundgaard, Eva
    Krebs, Frederik C.
    [J]. ORGANIC PHOTOVOLTAICS VII, 2006, 6334
  • [34] Cascade Solar Cells Based on GaP/Si/Ge Nanoheterostructures
    Lunin, L. S.
    Lunina, M. L.
    Pashchenko, A. S.
    Alfimova, D. L.
    Arustamyan, D. A.
    Kazakova, A. E.
    [J]. TECHNICAL PHYSICS LETTERS, 2019, 45 (03) : 250 - 252
  • [35] Cascade Solar Cells Based on GaP/Si/Ge Nanoheterostructures
    L. S. Lunin
    M. L. Lunina
    A. S. Pashchenko
    D. L. Alfimova
    D. A. Arustamyan
    A. E. Kazakova
    [J]. Technical Physics Letters, 2019, 45 : 250 - 252
  • [36] The limiting efficiency of band gap graded solar cells
    Rafat, NH
    Habib, SED
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 55 (04) : 341 - 361
  • [37] Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells
    Hao, Feng
    Stoumpos, Constantinos C.
    Chang, Robert P. H.
    Kanatzidis, Mercouri G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (22) : 8094 - 8099
  • [38] Wide Band Gap Gallium Phosphide Solar Cells
    Lu, Xuesong
    Huang, Susan
    Diaz, Martin B.
    Kotulak, Nicole
    Hao, Ruiying
    Opila, Robert
    Barnett, Allen
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2012, 2 (02): : 214 - 220
  • [39] Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells
    Khadka, Dhruba B.
    Kim, SeongYeon
    Kim, JunHo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (08): : 4251 - 4258
  • [40] Comparative study on the effects of substitutional Ag and substitutional Ge on kesterite thin-film solar cells
    Jiaming Hu
    Xiuxun Han
    Wuzhi Zhu
    Fangfang Wu
    Xiaohui Tan
    [J]. Applied Physics A, 2024, 130