Wide Band Gap Gallium Phosphide Solar Cells

被引:35
|
作者
Lu, Xuesong [1 ]
Huang, Susan [2 ]
Diaz, Martin B. [1 ]
Kotulak, Nicole [1 ]
Hao, Ruiying [1 ]
Opila, Robert [2 ]
Barnett, Allen [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
[2] Univ Delaware, Dept Mat Sci Engn, Newark, DE 19716 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2012年 / 2卷 / 02期
关键词
Gallium phosphide (GaP); liquid phase epitaxy (LPE); quantum efficiency (QE); wide band gap; EFFICIENCY; JUNCTION;
D O I
10.1109/JPHOTOV.2011.2182180
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Gallium phosphide (GaP), with its wide band gap of 2.26 eV, is a good candidate for the top junction solar cell in a multijunction solar cell system. Here, we design, fabricate, characterize, and analyze GaP solar cells. Liquid phase epitaxy is used to grow the semiconductor layers. Four generations of GaP solar cells are developed and fabricated with each solar cell structure being designed and improved based on the first principles analyses of the predecessor solar cells. Quantum efficiency and current-voltage measurements are used to analyze the solar cell performance and to develop predictive models. We create a GaP solar cell with an efficiency of 2.42% under AM 1.5G one sun illumination.
引用
收藏
页码:214 / 220
页数:7
相关论文
共 50 条
  • [1] Wide Band Gap Gallium Phosphide Solar Cells for Multi-Junction Solar Cell System
    Lu, Xuesong
    Huang, Susan R.
    Diaz, Martin
    Opila, Robert L.
    Barnett, Allen
    [J]. 35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [2] Direct Band Gap Wurtzite Gallium Phosphide Nanowires
    Assali, S.
    Zardo, I.
    Plissard, S.
    Kriegner, D.
    Verheijen, M. A.
    Bauer, G.
    Meijerink, A.
    Belabbes, A.
    Bechstedt, F.
    Haverkort, J. E. M.
    Bakkers, E. P. A. M.
    [J]. NANO LETTERS, 2013, 13 (04) : 1559 - 1563
  • [3] Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate
    Ren, Miao-Juan
    Li, Ming-Ming
    [J]. INTERNATIONAL CONFERENCE ON ENERGY DEVELOPMENT AND ENVIRONMENTAL PROTECTION (EDEP 2017), 2017, 168 : 8 - 12
  • [4] Wurtzite Gallium Phosphide has a Direct-Band Gap
    Assali, S.
    Zardo, I.
    Plissard, S.
    Verheijen, M. A.
    Haverkort, J. E. M.
    Bakkers, E. P. A. M.
    [J]. 2013 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS (IPRM), 2013,
  • [5] Solar Cells with Gallium Phosphide / Silicon Heterojunction
    Darnon, Maxime
    Varache, Renaud
    Descazeaux, Mederic
    Quinci, Thomas
    Martin, Mickael
    Baron, Thierry
    Munoz, Delfina
    [J]. 11TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-11), 2015, 1679
  • [6] Ammonolysis of gallium phosphide GaP to the nanocrystalline wide bandgap semiconductor gallium nitride GaN
    Drygas, Mariusz
    Sitarz, Maciej
    Janik, Jerzy F.
    [J]. RSC ADVANCES, 2015, 5 (128) : 106128 - 106140
  • [7] Wide band Metamaterial Absorber for Gallium Arsenide GaAs solar cells
    John, Victor Du H.
    Antony, Blessy
    Teja, Neelapala Nava
    Gandikota, Vinod
    [J]. ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 578 - 580
  • [8] Wide optical band gap window layers for solar cells
    Yu, ZR
    Pereyra, I
    Carreno, MNP
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 66 (1-4) : 155 - 162
  • [9] Band gap behavior of scandium aluminum phosphide and scandium gallium phosphide ternary alloys and superlattices
    Benalia, S.
    Merabet, M.
    Rached, D.
    Al-Douri, Y.
    Abidri, B.
    Khenata, R.
    Labair, M.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 31 : 493 - 500
  • [10] Modeling of a Gallium Phosphide/Silicon Heterojunction Solar Cells
    Luppina, Pietro
    Bowden, Stuart
    Lugli, Paolo
    Goodnick, Stephen M.
    [J]. 2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2467 - 2472