Finite-Temperature Topological Invariant for Interacting Systems

被引:19
|
作者
Unanyan, Razmik [1 ,2 ]
Kiefer-Emmanouilidis, Maximilian [1 ,2 ,3 ]
Fleischhauer, Michael [1 ,2 ,4 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Univ Manitoba, Dept Phys, Winnipeg, MB R3T 2N2, Canada
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.125.215701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the ensemble geometric phase, recently introduced to classify the topology of density matrices, to finite-temperature states of interacting systems in one spatial dimension (1D). This includes cases where the gapped ground state has a fractional filling and is degenerate. At zero temperature the corresponding topological invariant agrees with the well-known invariant of Niu, Thouless, and Wu. We show that its value at finite temperatures is identical to that of the ground state below some critical temperature T-c larger than the many-body gap. We illustrate our result with numerical simulations of the 1D extended superlattice Bose-Hubbard model at quarter filling. Here, a cyclic change of parameters in the ground state leads to a topological charge pump with fractional winding. nu = 1/2. The particle transport is no longer quantized when the temperature becomes comparable to the many-body gap, yet the winding of the generalized ensemble geometric phase is.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Proposal for measuring the finite-temperature Drude weight of integrable systems
    Karrasch, C.
    Prosen, T.
    Heidrich-Meisner, F.
    PHYSICAL REVIEW B, 2017, 95 (06)
  • [42] S-matrix description of nonequilibrium finite-temperature systems
    V. V. Voronyuk
    I. D. Mandzhavidze
    A. N. Sisakian
    Theoretical and Mathematical Physics, 2006, 149 : 1617 - 1627
  • [43] Finite-temperature transitions in ν=2 bilayer quantum Hall systems
    Yang, MF
    Chang, MC
    PHYSICAL REVIEW B, 2000, 61 (04) : R2429 - R2432
  • [44] Finite-temperature topological phase transitions of spin-j systems in Uhlmann processes: General formalism and experimental protocols
    Hou, Xu-Yang
    Guo, Hao
    Chien, Chih-Chun
    PHYSICAL REVIEW A, 2021, 104 (02)
  • [45] Finite-temperature conductance of interacting quantum wires with Rashba spin-orbit coupling
    Schmidt, Thomas L.
    PHYSICAL REVIEW B, 2013, 88 (23):
  • [46] GAUGE-INVARIANT CALCULATIONS IN FINITE-TEMPERATURE QCD - LANDAU GHOST AND MAGNETIC MASS
    CORNWALL, JM
    HOU, WS
    KING, JE
    PHYSICS LETTERS B, 1985, 153 (03) : 173 - 178
  • [47] Finite-temperature correlations for the Uq(sl(2|1))-invariant generalized Hubbard model
    Sakai, K
    Klümper, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (39): : 8015 - 8055
  • [48] NUCLEON PROPAGATOR AT FINITE-TEMPERATURE
    DOMINGUEZ, CA
    LOEWE, M
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 58 (02): : 273 - 277
  • [49] MASS GENERATION AT FINITE-TEMPERATURE
    LIAO, SB
    POLONYI, J
    NUCLEAR PHYSICS A, 1994, 570 (1-2) : C203 - C209
  • [50] Topological invariant and cotranslational symmetry in strongly interacting multi-magnon systems
    Qin, Xizhou
    Mei, Feng
    Ke, Yongguan
    Zhang, Li
    Lee, Chaohong
    NEW JOURNAL OF PHYSICS, 2018, 20