Finite-Temperature Topological Invariant for Interacting Systems

被引:19
|
作者
Unanyan, Razmik [1 ,2 ]
Kiefer-Emmanouilidis, Maximilian [1 ,2 ,3 ]
Fleischhauer, Michael [1 ,2 ,4 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Univ Manitoba, Dept Phys, Winnipeg, MB R3T 2N2, Canada
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.125.215701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the ensemble geometric phase, recently introduced to classify the topology of density matrices, to finite-temperature states of interacting systems in one spatial dimension (1D). This includes cases where the gapped ground state has a fractional filling and is degenerate. At zero temperature the corresponding topological invariant agrees with the well-known invariant of Niu, Thouless, and Wu. We show that its value at finite temperatures is identical to that of the ground state below some critical temperature T-c larger than the many-body gap. We illustrate our result with numerical simulations of the 1D extended superlattice Bose-Hubbard model at quarter filling. Here, a cyclic change of parameters in the ground state leads to a topological charge pump with fractional winding. nu = 1/2. The particle transport is no longer quantized when the temperature becomes comparable to the many-body gap, yet the winding of the generalized ensemble geometric phase is.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] PIONS AT FINITE-TEMPERATURE
    SONG, CS
    PHYSICAL REVIEW D, 1994, 49 (03) : 1556 - 1565
  • [22] SPHALERONS AT FINITE-TEMPERATURE
    BRAIBANT, S
    BRIHAYE, Y
    KUNZ, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (31): : 5563 - 5574
  • [23] EFFECTIVE FINITE-TEMPERATURE MEAN-FIELD APPROXIMATIONS IN FINITE SYSTEMS
    ROSSIGNOLI, R
    CANOSA, N
    RING, P
    NUCLEAR PHYSICS A, 1995, 591 (01) : 15 - 40
  • [24] FINITE-TEMPERATURE AMPLITUDES IN OPEN-STRING SYSTEMS
    LEBLANC, Y
    PHYSICAL REVIEW D, 1988, 37 (06): : 1547 - 1563
  • [25] PROJECTION AT FINITE-TEMPERATURE
    ROSSIGNOLI, R
    RING, P
    ANNALS OF PHYSICS, 1994, 235 (02) : 350 - 389
  • [26] SKYRMIONS AT FINITE-TEMPERATURE
    DEY, JS
    EISENBERG, JM
    PHYSICS LETTERS B, 1994, 334 (3-4) : 290 - 294
  • [27] Finite-temperature bosonization
    Bowen, G
    Gulácsi, M
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2001, 81 (10): : 1409 - 1442
  • [28] A finite-temperature phase transition for disordered weakly interacting bosons in one dimension
    Aleiner, I. L.
    Altshuler, B. L.
    Shlyapnikov, G. V.
    NATURE PHYSICS, 2010, 6 (11) : 900 - 904
  • [29] Finite-temperature conductance of strongly interacting quantum wire with a nuclear spin order
    Aseev, Pavel P.
    Klinovaja, Jelena
    Loss, Daniel
    PHYSICAL REVIEW B, 2017, 95 (12)
  • [30] A finite-temperature phase transition for disordered weakly interacting bosons in one dimension
    I. L. Aleiner
    B. L. Altshuler
    G. V. Shlyapnikov
    Nature Physics, 2010, 6 : 900 - 904