Finite-Temperature Topological Invariant for Interacting Systems

被引:19
|
作者
Unanyan, Razmik [1 ,2 ]
Kiefer-Emmanouilidis, Maximilian [1 ,2 ,3 ]
Fleischhauer, Michael [1 ,2 ,4 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Univ Manitoba, Dept Phys, Winnipeg, MB R3T 2N2, Canada
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.125.215701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the ensemble geometric phase, recently introduced to classify the topology of density matrices, to finite-temperature states of interacting systems in one spatial dimension (1D). This includes cases where the gapped ground state has a fractional filling and is degenerate. At zero temperature the corresponding topological invariant agrees with the well-known invariant of Niu, Thouless, and Wu. We show that its value at finite temperatures is identical to that of the ground state below some critical temperature T-c larger than the many-body gap. We illustrate our result with numerical simulations of the 1D extended superlattice Bose-Hubbard model at quarter filling. Here, a cyclic change of parameters in the ground state leads to a topological charge pump with fractional winding. nu = 1/2. The particle transport is no longer quantized when the temperature becomes comparable to the many-body gap, yet the winding of the generalized ensemble geometric phase is.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] FINITE-TEMPERATURE THEORY OF PARAMETRIC EFFECTS IN INTERACTING MAGNON SYSTEMS
    BALUCANI, U
    BAROCCHI, F
    TOGNETTI, V
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B, 1972, B 12 (01): : 83 - &
  • [2] FINITE-TEMPERATURE SYSTEM OF STRONGLY INTERACTING BARYONS
    BOWERS, RL
    GLEESON, AM
    PEDIGO, RD
    WHEELER, JW
    PHYSICAL REVIEW D, 1977, 15 (08): : 2125 - 2138
  • [3] Finite-Temperature Conductivity and Magnetoconductivity of Topological Insulators
    Lu, Hai-Zhou
    Shen, Shun-Qing
    PHYSICAL REVIEW LETTERS, 2014, 112 (14)
  • [4] DEFORMED SYSTEMS AT FINITE-TEMPERATURE
    RMONTEIRO, M
    RODITI, I
    PHYSICA A, 1994, 206 (1-2): : 253 - 266
  • [5] Finite-temperature effects on interacting bosonic one-dimensional systems in disordered lattices
    Gori, Lorenzo
    Barthel, Thomas
    Kumar, Avinash
    Lucioni, Eleonora
    Tanzi, Luca
    Inguscio, Massimo
    Modugno, Giovanni
    Giamarchi, Thierry
    D'Errico, Chiara
    Roux, Guillaume
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [6] Finite-temperature topological order in two-dimensional topological color codes
    Kargarian, Mehdi
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [7] Numerical Simulation of Finite-Temperature Field Theory for Interacting Bosons
    Delaney, Kris T.
    Orland, Henri
    Fredrickson, Glenn H.
    PHYSICAL REVIEW LETTERS, 2020, 124 (07)
  • [8] Inclusion of finite-temperature effects in a nonlinear description of strongly interacting many-body systems
    Tuszynski, JA
    Dixon, JM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 277 (3-4) : 432 - 454
  • [9] Topological phase transitions for interacting finite systems
    Varney, Christopher N.
    Sun, Kai
    Rigol, Marcos
    Galitski, Victor
    PHYSICAL REVIEW B, 2011, 84 (24):
  • [10] Comparison of finite-temperature topological indicators based on Uhlmann connection
    Zhang, Ye
    Pi, Aixin
    He, Yan
    Chien, Chih-Chun
    PHYSICAL REVIEW B, 2021, 104 (16)