Detection of abrupt spectral changes using support vector machines an application to audio signal segmentation

被引:0
|
作者
Davy, M [1 ]
Godsill, S [1 ]
机构
[1] CNRS, IRCCyN, UMR 6597, F-44321 Nantes 3, France
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we introduce an hybrid time-firequency/support vector machine algorithm for the detection of abrupt spectral changes. A stationarity index is derived from support vector novelty detection theory by using sub-images extracted from the time-frequency plane as feature vectors. Simulations show the efficiency of this new algorithm for audio signal segmentation, compared to another nonparametric detector.
引用
收藏
页码:1313 / 1316
页数:4
相关论文
共 50 条
  • [41] Emotion classification of audio signals using ensemble of support vector machines
    Danisman, Tatter
    Alpkocak, Adil
    PERCEPTION IN MULTIMODAL DIALOGUE SYSTEMS, PROCEEDINGS, 2008, 5078 : 205 - 216
  • [42] Multiscale SAR image segmentation using support vector machines
    Liu, Ting
    Wen, Xian-Bin
    Quan, Jin-Juan
    Xu, Xue-Quan
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 3, PROCEEDINGS, 2008, : 706 - +
  • [43] Recurrent Support Vector Machines for Audio-Based Multimedia Event Detection
    Wang, Yun
    Metze, Florian
    ICMR'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2016, : 265 - 269
  • [44] On Spectral Unmixing Resolution Using Extended Support Vector Machines
    Li, Xiaofeng
    Jia, Xiuping
    Wang, Liguo
    Zhao, Kai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (09): : 4985 - 4996
  • [45] Support Vector Machines Based Arrhythmia Detection from ECG Signal
    Matheus, David
    Villazana, Sergio
    Seijas, Cesar
    INGENIERIA UC, 2010, 17 (03): : 49 - 56
  • [46] Distinctive feature detection using support vector machines
    Niyogi, P
    Burges, C
    Ramesh, P
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 425 - 428
  • [47] Intrusion Detection using An Ensemble of Support Vector Machines
    Kumar, G. Kishor
    Kumar, R. Raja
    Basha, M. Suleman
    Reddy, K. Nageswara
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, : 266 - 275
  • [48] Patient fall detection using support vector machines
    Doukas, Charalampos
    Maglogiannis, Ilias
    Tragas, Philippos
    Liapis, Dimitris
    Yovanof, Gregory
    ARTIFICIAL INTELLIGENCE AND INNOVATIONS 2007: FROM THEORY TO APPLICATIONS, 2007, : 147 - 156
  • [49] Malware Detection Using Perceptrons and Support Vector Machines
    Gavrilut, Dragos
    Cimpoesu, Mihai
    Anton, Dan
    Ciortuz, Liviu
    2009 COMPUTATION WORLD: FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, 2009, : 283 - 288
  • [50] Speech event detection using support vector machines
    Yelamos, P.
    Ramirez, J.
    Gorriz, J. M.
    Puntonet, C. G.
    Segura, J. C.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 356 - 363