Analysis of first LIGO science data for stochastic gravitational waves -: art. no. 122004

被引:47
|
作者
Abbott, B [1 ]
Abbott, R
Adhikari, R
Ageev, A
Allen, B
Amin, R
Anderson, SB
Anderson, WG
Araya, M
Armandula, H
Asiri, F
Aufmuth, P
Aulbert, C
Babak, S
Balasubramanian, R
Ballmer, S
Barish, BC
Barker, D
Barker-Patton, C
Barnes, M
Barr, B
Barton, MA
Bayer, K
Beausoleil, R
Belczynski, K
Bennett, R
Berukoff, SJ
Betzwieser, J
Bhawal, B
Bilenko, IA
Billingsley, G
Black, E
Blackburn, K
Bland-Weaver, B
Bochner, B
Bogue, L
Bork, R
Bose, S
Brady, PR
Braginsky, VB
Brau, JE
Brown, DA
Brozek, S
Bullington, A
Buonanno, A
Burgess, R
Busby, D
Butler, WE
Byer, RL
Cadonati, L
机构
[1] CALTECH, LIGO, Pasadena, CA 91125 USA
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
[3] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
[4] Australian Natl Univ, Canberra, ACT 0200, Australia
[5] Calif State Univ Dominguez Hills, Carson, CA 90747 USA
[6] CALTECH, CaRT, Pasadena, CA 91125 USA
[7] Cardiff Univ, Cardiff CF2 3YB, S Glam, Wales
[8] Carleton Coll, Northfield, MN 55057 USA
[9] Cornell Univ, Ithaca, NY 14853 USA
[10] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[11] Hobart & William Smith Coll, Geneva, NY 14456 USA
[12] InterUniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
[13] MIT, LIGO, Cambridge, MA 02139 USA
[14] LIGO Hanford Observ, Richland, WA 99352 USA
[15] LIGO Livingston Observ, Livingston, LA 70754 USA
[16] Louisiana State Univ, Baton Rouge, LA 70803 USA
[17] Louisiana Tech Univ, Ruston, LA 71272 USA
[18] Loyola Univ, New Orleans, LA 70118 USA
[19] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[20] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
[21] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[22] Natl Astron Observ Japan, Tokyo 1818588, Japan
[23] Northwestern Univ, Evanston, IL 60208 USA
[24] Salish Kootenai Coll, Pablo, MT 59855 USA
[25] SE Louisiana Univ, Hammond, LA 70402 USA
[26] Stanford Univ, Stanford, CA 94305 USA
[27] Syracuse Univ, Syracuse, NY 13244 USA
[28] Penn State Univ, University Pk, PA 16802 USA
[29] Univ Texas, Brownsville, TX 78520 USA
[30] Texas Southmost Coll, Brownsville, TX 78520 USA
[31] Trinity Univ, San Antonio, TX 78212 USA
[32] Leibniz Univ Hannover, D-30167 Hannover, Germany
[33] Univ Illes Balears, E-07071 Palma de Mallorca, Spain
[34] Univ Birmingham, Birmingham B15 2TT, W Midlands, England
[35] Univ Florida, Gainesville, FL 32611 USA
[36] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland
[37] Univ Michigan, Ann Arbor, MI 48109 USA
[38] Univ Oregon, Eugene, OR 97403 USA
[39] Univ Rochester, Rochester, NY 14627 USA
[40] Univ Wisconsin, Milwaukee, WI 53201 USA
[41] Washington State Univ, Pullman, WA 99164 USA
[42] HP Labs, Palo Alto, CA USA
[43] CNRS, Inst Astrophys Paris, GReCO, F-75700 Paris, France
[44] Univ Tokyo, Inst Cosm Ray Res, Tokyo, Japan
[45] Univ Coll Dublin, Dublin 2, Ireland
来源
PHYSICAL REVIEW D | 2004年 / 69卷 / 12期
关键词
D O I
10.1103/PhysRevD.69.122004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the analysis of between 50 and 100 h of coincident interferometric strain data used to search for and establish an upper limit on a stochastic background of gravitational radiation. These data come from the first LIGO science run, during which all three LIGO interferometers were operated over a 2-week period spanning August and September of 2002. The method of cross correlating the outputs of two interferometers is used for analysis. We describe in detail practical signal processing issues that arise when working with real data, and we establish an observational upper limit on a f(-3) power spectrum of gravitational waves. Our 90% confidence limit is Omega(0)h(100)(2)less than or equal to23+/-4.6 in the frequency band 40-314 Hz, where h(100) is the Hubble constant in units of 100 km/sec/Mpc and Omega(0) is the gravitational wave energy density per logarithmic frequency interval in units of the closure density. This limit is approximately 10(4) times better than the previous, broadband direct limit using interferometric detectors, and nearly 3 times better than the best narrow-band bar detector limit. As LIGO and other worldwide detectors improve in sensitivity and attain their design goals, the analysis procedures described here should lead to stochastic background sensitivity levels of astrophysical interest.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Analysis of the π→eνγ experimental data -: art. no. 054020
    Poblaguev, AA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [42] Detection methods for non-Gaussian gravitational wave stochastic backgrounds -: art. no. 082003
    Drasco, S
    Flanagan, ÉÉ
    PHYSICAL REVIEW D, 2003, 67 (08)
  • [43] As f over dot(f)-frequency dynamics algorithm for gravitational waves -: art. no. 041502
    van Putten, MHPM
    Sarkar, A
    PHYSICAL REVIEW D, 2000, 62 (04):
  • [44] Gravitational waves from brane-world inflation with induced gravity -: art. no. 123519
    Bouhmadi-López, M
    Maartens, R
    Wands, D
    PHYSICAL REVIEW D, 2004, 70 (12): : 123519 - 1
  • [45] Gravitational waves from neutron stars with large toroidal B fields -: art. no. 084025
    Cutler, C
    PHYSICAL REVIEW D, 2002, 66 (08):
  • [46] Deterministic and stochastic models of intracellular Ca2+ waves -: art. no. 96
    Falcke, M
    NEW JOURNAL OF PHYSICS, 2003, 5
  • [47] Supersymmetry of gravitational ground states -: art. no. 020
    Aros, R
    Martínez, C
    Troncoso, R
    Zanelli, J
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (05):
  • [48] The basics of gravitational wave theory -: art. no. 204
    Flanagan, ÉÉ
    Hughes, SA
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [49] Gravitational lensing by naked singularities - art. no. 103004
    Virbhadra, KS
    Ellis, GFR
    PHYSICAL REVIEW D, 2002, 65 (10)
  • [50] Gravitational couplings of orientifold planes -: art. no. 033
    Henry-Labordère, P
    Julia, B
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (01):