Analysis of first LIGO science data for stochastic gravitational waves -: art. no. 122004

被引:47
|
作者
Abbott, B [1 ]
Abbott, R
Adhikari, R
Ageev, A
Allen, B
Amin, R
Anderson, SB
Anderson, WG
Araya, M
Armandula, H
Asiri, F
Aufmuth, P
Aulbert, C
Babak, S
Balasubramanian, R
Ballmer, S
Barish, BC
Barker, D
Barker-Patton, C
Barnes, M
Barr, B
Barton, MA
Bayer, K
Beausoleil, R
Belczynski, K
Bennett, R
Berukoff, SJ
Betzwieser, J
Bhawal, B
Bilenko, IA
Billingsley, G
Black, E
Blackburn, K
Bland-Weaver, B
Bochner, B
Bogue, L
Bork, R
Bose, S
Brady, PR
Braginsky, VB
Brau, JE
Brown, DA
Brozek, S
Bullington, A
Buonanno, A
Burgess, R
Busby, D
Butler, WE
Byer, RL
Cadonati, L
机构
[1] CALTECH, LIGO, Pasadena, CA 91125 USA
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
[3] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
[4] Australian Natl Univ, Canberra, ACT 0200, Australia
[5] Calif State Univ Dominguez Hills, Carson, CA 90747 USA
[6] CALTECH, CaRT, Pasadena, CA 91125 USA
[7] Cardiff Univ, Cardiff CF2 3YB, S Glam, Wales
[8] Carleton Coll, Northfield, MN 55057 USA
[9] Cornell Univ, Ithaca, NY 14853 USA
[10] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[11] Hobart & William Smith Coll, Geneva, NY 14456 USA
[12] InterUniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
[13] MIT, LIGO, Cambridge, MA 02139 USA
[14] LIGO Hanford Observ, Richland, WA 99352 USA
[15] LIGO Livingston Observ, Livingston, LA 70754 USA
[16] Louisiana State Univ, Baton Rouge, LA 70803 USA
[17] Louisiana Tech Univ, Ruston, LA 71272 USA
[18] Loyola Univ, New Orleans, LA 70118 USA
[19] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[20] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
[21] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[22] Natl Astron Observ Japan, Tokyo 1818588, Japan
[23] Northwestern Univ, Evanston, IL 60208 USA
[24] Salish Kootenai Coll, Pablo, MT 59855 USA
[25] SE Louisiana Univ, Hammond, LA 70402 USA
[26] Stanford Univ, Stanford, CA 94305 USA
[27] Syracuse Univ, Syracuse, NY 13244 USA
[28] Penn State Univ, University Pk, PA 16802 USA
[29] Univ Texas, Brownsville, TX 78520 USA
[30] Texas Southmost Coll, Brownsville, TX 78520 USA
[31] Trinity Univ, San Antonio, TX 78212 USA
[32] Leibniz Univ Hannover, D-30167 Hannover, Germany
[33] Univ Illes Balears, E-07071 Palma de Mallorca, Spain
[34] Univ Birmingham, Birmingham B15 2TT, W Midlands, England
[35] Univ Florida, Gainesville, FL 32611 USA
[36] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland
[37] Univ Michigan, Ann Arbor, MI 48109 USA
[38] Univ Oregon, Eugene, OR 97403 USA
[39] Univ Rochester, Rochester, NY 14627 USA
[40] Univ Wisconsin, Milwaukee, WI 53201 USA
[41] Washington State Univ, Pullman, WA 99164 USA
[42] HP Labs, Palo Alto, CA USA
[43] CNRS, Inst Astrophys Paris, GReCO, F-75700 Paris, France
[44] Univ Tokyo, Inst Cosm Ray Res, Tokyo, Japan
[45] Univ Coll Dublin, Dublin 2, Ireland
来源
PHYSICAL REVIEW D | 2004年 / 69卷 / 12期
关键词
D O I
10.1103/PhysRevD.69.122004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the analysis of between 50 and 100 h of coincident interferometric strain data used to search for and establish an upper limit on a stochastic background of gravitational radiation. These data come from the first LIGO science run, during which all three LIGO interferometers were operated over a 2-week period spanning August and September of 2002. The method of cross correlating the outputs of two interferometers is used for analysis. We describe in detail practical signal processing issues that arise when working with real data, and we establish an observational upper limit on a f(-3) power spectrum of gravitational waves. Our 90% confidence limit is Omega(0)h(100)(2)less than or equal to23+/-4.6 in the frequency band 40-314 Hz, where h(100) is the Hubble constant in units of 100 km/sec/Mpc and Omega(0) is the gravitational wave energy density per logarithmic frequency interval in units of the closure density. This limit is approximately 10(4) times better than the previous, broadband direct limit using interferometric detectors, and nearly 3 times better than the best narrow-band bar detector limit. As LIGO and other worldwide detectors improve in sensitivity and attain their design goals, the analysis procedures described here should lead to stochastic background sensitivity levels of astrophysical interest.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA
    Abbott, B. P.
    Abbott, R.
    Acernese, F.
    Adhikari, R.
    Ajith, P.
    Allen, B.
    Allen, G.
    Alshourbagy, M.
    Amin, R. S.
    Anderson, S. B.
    Anderson, W. G.
    Antonucci, F.
    Aoudia, S.
    Arain, M. A.
    Araya, M.
    Armandula, H.
    Armor, P.
    Arun, K. G.
    Aso, Y.
    Aston, S.
    Astonea, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P.
    Ballardin, G.
    Ballmer, S.
    Barker, C.
    Barker, D.
    Barone, F.
    Barr, B.
    Barriga, P.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Bastarrika, M.
    Bauer, Th. S.
    Behnke, B.
    Beker, M.
    Benacquista, M.
    Betzwieser, J.
    Beyersdorf, P. T.
    Bigotta, S.
    Bilenko, I. A.
    Billingsley, G.
    Birindelli, S.
    Biswas, R.
    Bizouard, M. A.
    ASTROPHYSICAL JOURNAL, 2010, 713 (01): : 671 - 685
  • [22] G1 spacetimes with gravitational and scalar waves -: art. no. 104008
    Lazkoz, R
    PHYSICAL REVIEW D, 1999, 60 (10):
  • [23] Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors
    Aasi, J.
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Affeldt, C.
    Agathos, M.
    Aggarwal, N.
    Aguiar, O. D.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Ceron, E. Amador
    Amariutei, D.
    Anderson, R. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J.
    Ast, S.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Austin, L.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barker, D.
    Barnum, S. H.
    Barone, F.
    Barr, B.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Basti, A.
    PHYSICAL REVIEW D, 2015, 91 (02)
  • [24] Self-phase modulation of spherical gravitational waves -: art. no. 084025
    Mendonça, JT
    Cardoso, V
    Marklund, M
    Servin, M
    Brodin, G
    PHYSICAL REVIEW D, 2003, 68 (08):
  • [25] Higher dimensional metrics of colliding gravitational plane waves -: art. no. 024029
    Gürses, M
    Kahya, EO
    Karasu, A
    PHYSICAL REVIEW D, 2002, 66 (02)
  • [26] Mini black holes and the relic gravitational waves spectrum -: art. no. 124005
    Izquierdo, G
    Pavón, D
    PHYSICAL REVIEW D, 2003, 68 (12)
  • [27] Is the squeezing of relic gravitational waves produced by inflation detectable?: art. no. 024024
    Allen, B
    Flanagan, ÉÉ
    Papa, MA
    PHYSICAL REVIEW D, 2000, 61 (02)
  • [28] Nonlinear self-interaction of plane gravitational waves -: art. no. 087501
    Servin, M
    Marklund, M
    Brodin, G
    Mendonça, JT
    Cardoso, V
    PHYSICAL REVIEW D, 2003, 67 (08):
  • [29] Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise:: Frequentist analyses -: art. no. 122002
    Allen, B
    Creighton, JDE
    Flanagan, ÉÉ
    Romano, JD
    PHYSICAL REVIEW D, 2002, 65 (12):
  • [30] First joint analysis between Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data
    Di Palma, Irene
    12TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2011), PTS 1-6, 2012, 375