Adhesion of nanoscale contacts is important in many applications, including microelectromechanical systems, fibrillar adhesives, and atomic force microscopy (AFM). Here, we quantify the properties of the adhesive traction-separation relation between ultrananocrystalline diamond (UNCD) AFM tips and polymethyl methacrylate (PMMA) surfaces using a novel AFM-based method that combines pull-off force measurements and characterization of the 3D geometry of the AFM tip. Three AFM tips with different nanoscale geometries were characterized and used to perform pull-off force measurements. Using the pull-off force data, the measured 3D tip geometries, and an assumed form of the traction- separation relation, specifically the Dugdale or 3-9 Lennard-Jones relations, the range, strength, and work of adhesion of the UNCD-PMMA contact were determined. The assumptions in the analyses were validated via finite element modeling. Both forms of the traction-separation laws result in a work of adhesion of approximately 50 mJ/m(2) and the peak adhesive stress in the LennardJones relation is found to be about 50% higher than that obtained for the Dugdale law. (C) 2016 Elsevier Ltd. All rights reserved.