Almost Empty Monochromatic Quadrilaterals in Planar Point Sets

被引:1
|
作者
Liu, L. [1 ]
Zhang, Y. [1 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin, Peoples R China
关键词
empty polygons; colored point sets; discrete geometry; Erdos-Szekeres theorem; ERDOS-SZEKERES PROBLEM; QUADRANGULATIONS; THEOREM;
D O I
10.1134/S0001434618030082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For positive integers c, s 1, r 3, let W (r) (c, s) be the least integer such that if a set of at least W (r) (c, s) points in the plane, no three of which are collinear, is colored with c colors, then this set contains a monochromatic r-gon with at most s interior points. As is known, if r = 3, then W (r) (c, s)=W (r) (c, s). In this paper, we extend these results to the case r = 4. We prove that W4(2, 1) = 11, W4(3, 2) 120, and the least integer mu 4(c) such that W4(c, mu 4(c)) < a is bounded by ,where c >= 2.
引用
收藏
页码:415 / 429
页数:15
相关论文
共 50 条
  • [31] Empty monochromatic triangles
    Aichholzer, Oswin
    Fabila-Monroy, Ruy
    Flores-Penaloza, David
    Hackl, Thomas
    Huemer, Clemens
    Urrutia, Jorge
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (09): : 934 - 938
  • [32] κ-Sets of convex inclusion chains of planar point sets
    El Oraiby, Wael
    Schmitt, Dominique
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 339 - 350
  • [33] Lattice Embeddings of Planar Point Sets
    Knopf, Michael
    Milzman, Jesse
    Smith, Derek
    Zhu, Dantong
    Zirlin, Dara
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 56 (03) : 693 - 710
  • [34] Lattice Embeddings of Planar Point Sets
    Michael Knopf
    Jesse Milzman
    Derek Smith
    Dantong Zhu
    Dara Zirlin
    Discrete & Computational Geometry, 2016, 56 : 693 - 710
  • [35] On Planar Point Sets with the Pentagon Property
    Cibulka, Josef
    Kyncl, Jan
    Valtr, Pavel
    PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), 2013, : 81 - 90
  • [36] Measuring linearity of planar point sets
    Stojmenovic, Milos
    Nayak, Amiya
    Zunic, Jovisa
    PATTERN RECOGNITION, 2008, 41 (08) : 2503 - 2511
  • [37] On the number of triangulations of planar point sets
    Seidel, R
    COMBINATORICA, 1998, 18 (02) : 297 - 299
  • [38] Counting Triangulations of Planar Point Sets
    Sharir, Micha
    Sheffer, Adam
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [39] Covering Paths for Planar Point Sets
    Adrian Dumitrescu
    Dániel Gerbner
    Balázs Keszegh
    Csaba D. Tóth
    Discrete & Computational Geometry, 2014, 51 : 462 - 484
  • [40] Covering Paths for Planar Point Sets
    Dumitrescu, Adrian
    Gerbner, Daniel
    Keszegh, Balazs
    Toth, Csaba D.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (02) : 462 - 484