Spectral-Spatial Hyperspectral Image Classification via Adaptive Total Variation Filtering

被引:0
|
作者
Tu, Bing [1 ]
Wang, Jinping [1 ]
Zhang, Xiaofei [1 ]
Huang, Siyuan [1 ]
Zhang, Guoyun [1 ]
机构
[1] Hunan Inst Sci & Technol, Sch Informat Sci & Technol, Yueyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; PCA; Adaptive total variation; Ensemble empirical mode decomposition; SVM; EMPIRICAL MODE DECOMPOSITION;
D O I
10.1007/978-3-030-00767-6_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is unavoidable that existing noise interference in hyperspectral image (HSI). In order to reduce the noise in HSI and obtain a higher classification result, a spectral-spatial HSI classification via adaptive total variation filtering (ATVF) is proposed in this paper, which consists of the following steps: first, the principal component analysis (PCA) method is used for dimension reduction of HSI. Then, the adaptive total variation filtering is performed on the principal components so as to reduce the sensitiveness of noise and obtain a coarse contour feature. Next, the ensemble empirical mode decomposition is used to decompose each spectrum band into serial components, the characteristics of HSI can be further integrated in a transform domain. Finally, a pixel-level classifier (such as SVM) is used for classification of the processed image. The paper analyzes the effect of different parameters of ATVF method on the classification performance in detail, tests the proposed algorithm on the real hyperspectral data sets, and finally verifies the superiority of the proposed algorithm based on a contrastive analysis of different algorithms.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 50 条
  • [21] Discriminative Low-Rank Gabor Filtering for Spectral-Spatial Hyperspectral Image Classification
    He, Lin
    Li, Jun
    Plaza, Antonio
    Li, Yuanqing
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (03): : 1381 - 1395
  • [22] Spectral-Spatial Attention Networks for Hyperspectral Image Classification
    Mei, Xiaoguang
    Pan, Erting
    Ma, Yong
    Dai, Xiaobing
    Huang, Jun
    Fan, Fan
    Du, Qinglei
    Zheng, Hong
    Ma, Jiayi
    [J]. REMOTE SENSING, 2019, 11 (08)
  • [23] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    [J]. NEUROCOMPUTING, 2019, 328 : 39 - 47
  • [24] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [25] SPECTRAL-SPATIAL ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5126 - 5129
  • [26] A Complementary Spectral-Spatial Method for Hyperspectral Image Classification
    Shi, Lulu
    Li, Chunchao
    Li, Teng
    Peng, Yuanxi
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] Hyperspectral Image Classification Using Spectral-Spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    [J]. COMPUTER VISION, PT I, 2017, 771 : 577 - 588
  • [28] Spectral-Spatial Rotation Forest for Hyperspectral Image Classification
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (10) : 4605 - 4613
  • [29] Spectral-Spatial Unified Networks for Hyperspectral Image Classification
    Xu, Yonghao
    Zhang, Liangpei
    Du, Bo
    Zhang, Fan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 5893 - 5909
  • [30] Sparse Representations for the Spectral-Spatial Classification of Hyperspectral Image
    Hamdi, Mohamed Ali
    Ben Salem, Rafika
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 923 - 929