Global stability properties of a class of renewal epidemic models

被引:0
|
作者
Meehan, Michael T. [1 ]
Cocks, Daniel G. [2 ]
Mueller, Johannes [3 ,4 ]
McBryde, Emma S. [1 ]
机构
[1] James Cook Univ, Australian Inst Trop Hlth & Med, Townsville, Qld, Australia
[2] Australian Natl Univ, Res Sch Sci & Engn, Canberra, ACT, Australia
[3] Tech Univ Munich, Ctr Math Sci, Munich, Germany
[4] German Res Ctr Environm Hlth, Inst Computat Biol, Munich, Germany
关键词
Global stability; Lyapunov; Renewal; Kermack-McKendrick;
D O I
10.1007/s00285-018-01324-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the global dynamics of a general Kermack-McKendrick-type epidemic model formulated in terms of a system of renewal equations. Specifically, we consider a renewal model for which both the force of infection and the infected removal rates are arbitrary functions of the infection age, , and use the direct Lyapunov method to establish the global asymptotic stability of the equilibrium solutions. In particular, we show that the basic reproduction number, R0, represents a sharp threshold parameter such that for R01, the infection-free equilibrium is globally asymptotically stable; whereas the endemic equilibrium becomes globally asymptotically stable when R0>1, i.e. when it exists.
引用
收藏
页码:1713 / 1725
页数:13
相关论文
共 50 条
  • [1] Global stability properties of a class of renewal epidemic models
    Michael T. Meehan
    Daniel G. Cocks
    Johannes Müller
    Emma S. McBryde
    [J]. Journal of Mathematical Biology, 2019, 78 : 1713 - 1725
  • [2] Permanence and global stability of a class of discrete epidemic models
    Muroya, Yoshiaki
    Nakata, Yukihiko
    Izzo, Giuseppe
    Vecchio, Antonia
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2105 - 2117
  • [3] GLOBAL STABILITY FOR A CLASS OF DISCRETE SIR EPIDEMIC MODELS
    Enatsu, Yoichi
    Nakata, Yukihiko
    Muroya, Yoshiaki
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (02) : 347 - 361
  • [4] An algebraic approach to proving the global stability of a class of epidemic models
    Li, Jianquan
    Xiao, Yanni
    Zhang, Fengqin
    Yang, Yali
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2006 - 2016
  • [5] Global stability of travelling waves for a class of monostable epidemic models
    Xu, Zhaoquan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [6] A CLASS OF LYAPUNOV FUNCTIONS AND THE GLOBAL STABILITY OF SOME EPIDEMIC MODELS WITH NONLINEAR INCIDENCE
    Li, Jianquan
    Yang, Yali
    Xiao, Yanni
    Liu, Shuo
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 38 - 46
  • [7] Global stability for cholera epidemic models
    Tian, Jianjun Paul
    Wang, Jin
    [J]. MATHEMATICAL BIOSCIENCES, 2011, 232 (01) : 31 - 41
  • [8] Global stability of two epidemic models
    Gou, Qingming
    Wang, Wendi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (02): : 333 - 345
  • [9] Global stability of SAIRS epidemic models
    Ottaviano, Stefania
    Sensi, Mattia
    Sottile, Sara
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 65
  • [10] GLOBAL ASYMPTOTIC STABILITY IN EPIDEMIC MODELS
    THIEME, HR
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 1017 : 608 - 615