Global stability of travelling waves for a class of monostable epidemic models

被引:5
|
作者
Xu, Zhaoquan [1 ]
机构
[1] Jinan Univ, Dept Math, Guangzhou 510632, Peoples R China
关键词
Travelling wave solutions; Monostable reaction-diffusion systems; Stability; Uniqueness; REACTION-DIFFUSION EQUATION; EXPONENTIAL STABILITY; ASYMPTOTIC STABILITY; SPREADING SPEEDS; FRONTS; SYSTEM; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.cnsns.2020.105595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability of travelling wave solutions for a monostable reaction-diffusion system which describes the spatial spread of a class of bacterial and viral in man-environment diseases. Mathematically we prove the global stability of traveling wave solutions with any admissible wave speed (including the critical wave speed) for the system, and compute numerically the critical wave speed and solutions of the cauchy problem with given initial functions close to the travelling waves at the wave tail for some reaction functions to show the global stability of traveling wave solutions with noncritical wave speed and critical wave speed, respectively. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multidimensional travelling waves in the monostable case
    Volpert, V
    Volpert, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (02): : 123 - 128
  • [2] Permanence and global stability of a class of discrete epidemic models
    Muroya, Yoshiaki
    Nakata, Yukihiko
    Izzo, Giuseppe
    Vecchio, Antonia
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2105 - 2117
  • [3] Global stability properties of a class of renewal epidemic models
    Michael T. Meehan
    Daniel G. Cocks
    Johannes Müller
    Emma S. McBryde
    [J]. Journal of Mathematical Biology, 2019, 78 : 1713 - 1725
  • [4] GLOBAL STABILITY FOR A CLASS OF DISCRETE SIR EPIDEMIC MODELS
    Enatsu, Yoichi
    Nakata, Yukihiko
    Muroya, Yoshiaki
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (02) : 347 - 361
  • [5] Global stability properties of a class of renewal epidemic models
    Meehan, Michael T.
    Cocks, Daniel G.
    Mueller, Johannes
    McBryde, Emma S.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (06) : 1713 - 1725
  • [6] Nonlinear Stability of Traveling Waves in a Monostable Epidemic Model with Delay
    Wu, Xin
    Ma, Zhaohai
    Yuan, Rong
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (06): : 1381 - 1411
  • [7] Uniqueness of travelling waves for nonlocal monostable equations
    Carr, J
    Chmaj, A
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) : 2433 - 2439
  • [8] An algebraic approach to proving the global stability of a class of epidemic models
    Li, Jianquan
    Xiao, Yanni
    Zhang, Fengqin
    Yang, Yali
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2006 - 2016
  • [9] EXISTENCE OF TRAVELLING WAVES IN NONLINEAR SI EPIDEMIC MODELS
    Zhang, Fen-Fen
    Huo, Gang
    Liu, Quan-Xing
    Sun, Gui-Quan
    Jin, Zhen
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2009, 17 (04) : 643 - 657
  • [10] Existence and stabilty of multidimensional travelling waves in the monostable case
    Volpert, VA
    Volpert, AI
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1999, 110 (1) : 269 - 292