Permanence and global stability of a class of discrete epidemic models

被引:28
|
作者
Muroya, Yoshiaki [1 ]
Nakata, Yukihiko [3 ]
Izzo, Giuseppe [2 ]
Vecchio, Antonia [4 ]
机构
[1] Waseda Univ, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, Japan
[2] Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[3] BCAM Basque Ctr Appl Math, E-48160 Derio, Spain
[4] CNR, Ist Appl Calcolo M Picone, I-80131 Naples, Italy
基金
日本学术振兴会;
关键词
Discrete epidemic model; Permanence; Global asymptotic stability; Endemic equilibrium; INFECTIOUS-DISEASES; DYNAMICS; PROGRESSION;
D O I
10.1016/j.nonrwa.2010.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the permanence of a system and give a sufficient condition for the endemic equilibrium to be globally asymptotically stable, which are the remaining problems in our previous paper (G. Izzo, Y. Muroya, A. Vecchio, A general discrete time model of population dynamics in the presence of an infection, Discrete Dyn. Nat. Soc. (2009), Article ID 143019, 15 pages. doi:10.1155/2009/143019.) (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2105 / 2117
页数:13
相关论文
共 50 条
  • [1] GLOBAL STABILITY FOR A CLASS OF DISCRETE SIR EPIDEMIC MODELS
    Enatsu, Yoichi
    Nakata, Yukihiko
    Muroya, Yoshiaki
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (02) : 347 - 361
  • [2] PERMANENCE OF SOME DISCRETE EPIDEMIC MODELS
    Sekiguchi, Masaki
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2009, 2 (04) : 443 - 461
  • [3] Stability analysis in a class of discrete SIRS epidemic models
    Hu, Zengyun
    Teng, Zhidong
    Jiang, Haijun
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2017 - 2033
  • [4] Global stability properties of a class of renewal epidemic models
    Michael T. Meehan
    Daniel G. Cocks
    Johannes Müller
    Emma S. McBryde
    [J]. Journal of Mathematical Biology, 2019, 78 : 1713 - 1725
  • [5] Global stability properties of a class of renewal epidemic models
    Meehan, Michael T.
    Cocks, Daniel G.
    Mueller, Johannes
    McBryde, Emma S.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (06) : 1713 - 1725
  • [6] PERMANENCE AND GLOBAL STABILITY OF A DISCRETE COOPERATION SYSTEM
    Chen Yaoping(College of Math. and Computer Science
    [J]. Annals of Applied Mathematics, 2008, (02) : 127 - 132
  • [7] Permanence and global stability for nonlinear discrete model
    Chen Xiaoxing
    [J]. ADVANCES IN COMPLEX SYSTEMS, 2006, 9 (1-2): : 31 - 40
  • [8] An algebraic approach to proving the global stability of a class of epidemic models
    Li, Jianquan
    Xiao, Yanni
    Zhang, Fengqin
    Yang, Yali
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2006 - 2016
  • [9] Global stability of travelling waves for a class of monostable epidemic models
    Xu, Zhaoquan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [10] Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence
    Xiaolin Fan
    Lei Wang
    Zhidong Teng
    [J]. Advances in Difference Equations, 2016