Dynamical chaos in two-dimensional nonlinear nonautonomous systems of ordinary differential equations

被引:2
|
作者
Magnitskii, N. A. [1 ]
Sidorov, S. V. [1 ]
机构
[1] Russian Acad Sci, Inst Syst Anal, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Stable Cycle; Stable Limit Cycle; Mathieu Equation; Dynamical Chaos; Holmes Equation;
D O I
10.1134/S0012266106110073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1579 / 1586
页数:8
相关论文
共 50 条
  • [41] Periodic solutions of nonautonomous ordinary differential equations
    Kiguradze, I.
    Lomtatidze, A.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2010, 159 (03): : 235 - 252
  • [42] Periodic solutions of nonautonomous ordinary differential equations
    I. Kiguradze
    A. Lomtatidze
    [J]. Monatshefte für Mathematik, 2010, 159 : 235 - 252
  • [43] Chaos in nonautonomous discrete fuzzy dynamical systems
    Lan, Yaoyao
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02): : 404 - 412
  • [44] Chaos in differential equations driven by a nonautonomous force
    Lu, Kening
    Wang, Qiudong
    [J]. NONLINEARITY, 2010, 23 (11) : 2935 - 2975
  • [45] Remarks on sensitivity and chaos in nonautonomous dynamical systems
    Salman, Mohammad
    Das, Ruchi
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (02) : 289 - 294
  • [46] On General Solutions of two Nonlinear Ordinary Differential Equations
    Kudryashov, Nikolay A.
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [47] Dynamical Systems and Stochastic Programming: To Ordinary Differential Equations and Back
    Bortolussi, Luca
    Policriti, Alberto
    [J]. TRANSACTIONS ON COMPUTATIONAL SYSTEMS BIOLOGY XI, 2009, 5750 : 216 - +
  • [48] Symmetries of differential-difference dynamical systems in a two-dimensional lattice
    Ste-Marie, Isabelle
    Tremblay, Sebastien
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (45)
  • [49] On the Integration of a Class of Nonlinear Systems of Ordinary Differential Equations
    Talyshev, Aleksandr A.
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING (ICMM-2017), 2017, 1907
  • [50] On controllability of nonlinear systems described by ordinary differential equations
    Idczak, Dariusz
    Majewski, Marek
    Walczak, Stanislaw
    [J]. POSITIVE SYSTEMS, PROCEEDINGS, 2006, 341 : 287 - 294