Symmetries of differential-difference dynamical systems in a two-dimensional lattice

被引:2
|
作者
Ste-Marie, Isabelle [1 ]
Tremblay, Sebastien [1 ]
机构
[1] Univ Quebec Trois Rivieres, Dept Math & Informat, Trois Rivieres, PQ G9A 5H7, Canada
关键词
PERIODIC STRUCTURES; GROUND-STATES; CLASSIFICATION; MODELS;
D O I
10.1088/1751-8113/42/45/454020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classification of differential-difference equations of the form u(nm) = F-nm(t, {upq}|((p,q)is an element of Gamma)) is considered according to their Lie point symmetry groups. The set Gamma represents the point (n, m) and its six nearest neighbors in a two-dimensional triangular lattice. It is shown that the symmetry group can be at most 12 dimensional for Abelian symmetry algebras and 13 dimensional for nonsolvable symmetry algebras.
引用
收藏
页数:22
相关论文
共 50 条