A NOTE ON RIGIDITY OF ANOSOV DIFFEOMORPHISMS OF THE THREE TORUS

被引:3
|
作者
Micena, F. [1 ]
Tahzibi, A. [2 ]
机构
[1] Univ Fed Itajuba, IMC, BR-37500903 Itajuba, MG, Brazil
[2] Univ Sao Paulo, ICMC, BR-13566590 Sao Carlos, SP, Brazil
关键词
D O I
10.1090/proc/14422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Anosov diffeomorphisms on T-3 such that the tangent bundle splits into three subbundles E-f(s) circle plus E-f(su). We show that if f is C-r, r >= 2, volume preserving, then f is C-1 conjugated with its linear part A if and only if the center foliation F-f(wu) is absolutely continuous and the equality lambda(wu)(f) (x) = lambda(wu)(A), between center Lyapunov exponents of f and A, holds for m a.e. x is an element of T-3. We also conclude rigidity derived from Anosov diffeomorphism, assuming a strong absolute continuity property (Uniform Bounded Density property) of strong stable and strong unstable foliations.
引用
收藏
页码:2453 / 2463
页数:11
相关论文
共 50 条
  • [31] ANOSOV DIFFEOMORPHISMS ON PLANE
    MENDES, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 63 (02) : 231 - 235
  • [32] Anosov and Circle Diffeomorphisms
    Almeida, Joao P.
    Fisher, Albert M.
    Pinto, Alberto A.
    Rand, David A.
    DYNAMICS, GAMES AND SCIENCE I, 2011, 1 : 11 - 23
  • [33] Accessibility and homology bounded strong unstable foliation for Anosov diffeomorphisms on 3-torus
    Yan Ren
    Shao Bo Gan
    Peng Fei Zhang
    Acta Mathematica Sinica, English Series, 2017, 33 : 71 - 76
  • [34] Accessibility and Homology Bounded Strong Unstable Foliation for Anosov Diffeomorphisms on 3-torus
    Yan REN
    Shao Bo GAN
    Peng Fei ZHANG
    ActaMathematicaSinica, 2017, 33 (01) : 71 - 76
  • [35] Accessibility and homology bounded strong unstable foliation for Anosov diffeomorphisms on 3-torus
    Ren, Yan
    Gan, Shao Bo
    Zhang, Peng Fei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (01) : 71 - 76
  • [36] CHARACTERIZATION OF ANOSOV DIFFEOMORPHISMS
    MATHER, JN
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (05): : 479 - &
  • [37] Anosov Diffeomorphisms and -Tilings
    Almeida, Joao P.
    Pinto, Alberto A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 345 (02) : 435 - 456
  • [38] Anosov diffeomorphisms and coupling
    Bressaud, X
    Liverani, C
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 129 - 152
  • [39] ANOSOV DIFFEOMORPHISMS ON NILMANIFOLDS
    MANNING, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 38 (02) : 423 - 426
  • [40] CODIMENSION ONE ANOSOV DIFFEOMORPHISMS
    NEWHOUSE, SE
    AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (03) : 761 - &