A NOTE ON RIGIDITY OF ANOSOV DIFFEOMORPHISMS OF THE THREE TORUS

被引:3
|
作者
Micena, F. [1 ]
Tahzibi, A. [2 ]
机构
[1] Univ Fed Itajuba, IMC, BR-37500903 Itajuba, MG, Brazil
[2] Univ Sao Paulo, ICMC, BR-13566590 Sao Carlos, SP, Brazil
关键词
D O I
10.1090/proc/14422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Anosov diffeomorphisms on T-3 such that the tangent bundle splits into three subbundles E-f(s) circle plus E-f(su). We show that if f is C-r, r >= 2, volume preserving, then f is C-1 conjugated with its linear part A if and only if the center foliation F-f(wu) is absolutely continuous and the equality lambda(wu)(f) (x) = lambda(wu)(A), between center Lyapunov exponents of f and A, holds for m a.e. x is an element of T-3. We also conclude rigidity derived from Anosov diffeomorphism, assuming a strong absolute continuity property (Uniform Bounded Density property) of strong stable and strong unstable foliations.
引用
下载
收藏
页码:2453 / 2463
页数:11
相关论文
共 50 条
  • [21] Anosov endomorphisms on the two-torus: regularity of foliations and rigidity
    Cantarino, Marisa
    Varao, Regis
    NONLINEARITY, 2023, 36 (10) : 5334 - 5357
  • [22] On C0-centralizers of Anosov diffeomorphisms on the torus: algebraic and topological aspects
    Rocha, Jorge
    Varandas, Paulo
    FUNDAMENTA MATHEMATICAE, 2022, 258 (01) : 1 - 24
  • [23] Diffeomorphisms Holder conjugate to Anosov diffeomorphisms
    Gogolev, Andrey
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 441 - 456
  • [24] Entropy rigidity of Anosov flows in dimension three
    Foulon, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 1101 - 1112
  • [25] ANOSOV DIFFEOMORPHISMS ON TORI
    FRANKS, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 : 117 - &
  • [26] The space of Anosov diffeomorphisms
    Farrell, F. Thomas
    Gogolev, Andrey
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 : 383 - 396
  • [27] Diffeomorphisms holomorphic Anosov
    Cantat, S
    COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (04) : 779 - 797
  • [28] Examples of Anosov diffeomorphisms
    Lauret, J
    JOURNAL OF ALGEBRA, 2003, 262 (01) : 201 - 209
  • [29] Anosov and Circle Diffeomorphisms
    Almeida, Joao P.
    Fisher, Albert M.
    Pinto, Alberto A.
    Rand, David A.
    DYNAMICS, GAMES AND SCIENCE I, 2011, 1 : 11 - 23
  • [30] ANOSOV DIFFEOMORPHISMS ON PLANE
    MENDES, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 63 (02) : 231 - 235