Interval Type-2 Fuzzy C-Means using Multiple Kernels

被引:1
|
作者
Abhishek [1 ]
Jeph, Anubhav [2 ]
Rhee, Frank C. -H. [1 ]
机构
[1] Hanyang Univ, Elect & Commun, Seoul, South Korea
[2] Indian Inst Technol, Dept Comp Sci Engn, Gauhati, India
基金
新加坡国家研究基金会;
关键词
Fuzzy c-means (FCM); fuzzy clustering; multiple Gaussian kernels; type-2 fuzzy sets; footprint of uncertainty;
D O I
10.1109/FUZZ-IEEE.2013.6622306
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an adaptive hybrid clustering method, where fuzzy C-means with multiple kernels (FCM-MK) has been combined with interval type-2 fuzzy C-means. In the proposed method, multiple Gaussian kernels are used. The resolution-specific weight, the membership values, and the cluster prototypes are decided in situ. In the calculation of the cluster prototypes, uncertainty associated with the fuzzifier parameter m is considered. In doing so, a pattern set is extended to interval type-2 fuzzy sets using two fuzzifiers m(1) and m(2), creating a footprint of uncertainty (FOU) for the fuzzifier m. This is followed by type reduction and defuzzification for obtaining the final location of the prototypes. Various experimental results are shown to validate the effectiveness of the proposed clustering method.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Multiple Kernels Interval Type-2 Possibilistic C-Means
    Minh Ngoc Vu
    Long Thanh Ngo
    [J]. RECENT DEVELOPMENTS IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, 2016, 642 : 63 - 73
  • [2] Multiple Kernel Interval Type-2 Fuzzy C-Means Clustering
    Dzung Dinh Nguyen
    Long Thanh Ngo
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [3] Interval Type-2 Fuzzy C-means Clustering using Intuitionistic Fuzzy Sets
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Long The Pham
    [J]. 2013 THIRD WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES (WICT), 2013, : 299 - 304
  • [4] Enhanced interval type-2 fuzzy C-means algorithm
    Qiu, Cun-Yong
    Xiao, Jian
    Han, Lu
    [J]. Kongzhi yu Juece/Control and Decision, 2014, 29 (03): : 465 - 469
  • [5] Uncertain fuzzy clustering:: Interval type-2 fuzzy approach to C-means
    Hwang, Cheul
    Rhee, Frank Chung-Hoon
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (01) : 107 - 120
  • [6] Interval Type-2 Fuzzy C-Means Approach to Collaborative Clustering
    Trong Hop Dang
    Long Thanh Ngo
    Pedrycz, Witold
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [7] Interval Type-2 Relative Entropy Fuzzy C-Means clustering
    Zarinbal, M.
    Zarandi, M. H. Fazel
    Turksen, I. B.
    [J]. INFORMATION SCIENCES, 2014, 272 : 49 - 72
  • [8] Images Segmentation based on Interval Type-2 Fuzzy C-Means
    Assas, Ouarda
    [J]. 2015 SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2015, : 773 - 781
  • [9] Interval Type-2 Fuzzy Possibilistic C-Means Clustering Algorithm
    Rubio, E.
    Castillo, Oscar
    Melin, Patricia
    [J]. RECENT DEVELOPMENTS AND NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2016, 342 : 185 - 194
  • [10] Genetic Based Interval Type-2 Fuzzy C-Means Clustering
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Long The Pham
    [J]. CONTEXT-AWARE SYSTEMS AND APPLICATIONS, (ICCASA 2012), 2013, 109 : 239 - 248