Interval Type-2 Fuzzy C-Means using Multiple Kernels

被引:1
|
作者
Abhishek [1 ]
Jeph, Anubhav [2 ]
Rhee, Frank C. -H. [1 ]
机构
[1] Hanyang Univ, Elect & Commun, Seoul, South Korea
[2] Indian Inst Technol, Dept Comp Sci Engn, Gauhati, India
基金
新加坡国家研究基金会;
关键词
Fuzzy c-means (FCM); fuzzy clustering; multiple Gaussian kernels; type-2 fuzzy sets; footprint of uncertainty;
D O I
10.1109/FUZZ-IEEE.2013.6622306
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an adaptive hybrid clustering method, where fuzzy C-means with multiple kernels (FCM-MK) has been combined with interval type-2 fuzzy C-means. In the proposed method, multiple Gaussian kernels are used. The resolution-specific weight, the membership values, and the cluster prototypes are decided in situ. In the calculation of the cluster prototypes, uncertainty associated with the fuzzifier parameter m is considered. In doing so, a pattern set is extended to interval type-2 fuzzy sets using two fuzzifiers m(1) and m(2), creating a footprint of uncertainty (FOU) for the fuzzifier m. This is followed by type reduction and defuzzification for obtaining the final location of the prototypes. Various experimental results are shown to validate the effectiveness of the proposed clustering method.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] Interval Type-2 Fuzzy Possibilistic C-Means Clustering Based on Granular Gravitational Forces and Particle Swarm Optimization
    Hung Quoc Truong
    Long Thanh Ngo
    Long The Pham
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2019, 23 (03) : 592 - 601
  • [42] A Novel Adaptive Fuzzy c-Means Algorithm for Interval Data Type
    de Souza, Renata M. C. R.
    de Carvalho, Leonardo Vieira
    Cavalcanti Junior, Nicomedes L.
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [43] Interval type fuzzifier parameter model in fuzzy C-means clustering
    Xiao, Man-Sheng
    Xiao, Zhe
    Wen, Zhi-Qiang
    Yu, Hui-Jun
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2015, 37 (04): : 868 - 873
  • [44] A Novel Type-2 Fuzzy C-Means Clustering for Brain MR Image Segmentation
    Mishro, Pranaba K.
    Agrawal, Sanjay
    Panda, Rutuparna
    Abraham, Ajith
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (08) : 3901 - 3912
  • [45] Design of Reinforced Interval Type-2 Fuzzy C-Means-Based Fuzzy Classifier
    Kim, Eun-Hu
    Oh, Sung-Kwun
    Pedrycz, Witold
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (05) : 3054 - 3068
  • [46] A Novel Single Fuzzifier Interval Type-2 Fuzzy C-Means Clustering With Local Information for Land-Cover Segmentation
    Wu, Chengmao
    Guo, Xiaokang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5903 - 5917
  • [47] Remote sensing image classification based on semi-supervised adaptive interval type-2 fuzzy c-means algorithm
    Xu, Jindong
    Feng, Guozheng
    Zhao, Tianyu
    Sun, Xiao
    Zhu, Meng
    COMPUTERS & GEOSCIENCES, 2019, 131 : 132 - 143
  • [48] Interval Type-2 enhanced possibilistic fuzzy C-means noisy image segmentation algorithm amalgamating weighted local information
    Huang, Chengquan
    Lei, Huan
    Chen, Yang
    Cai, Jianghai
    Qin, Xiaosu
    Peng, Jialei
    Zhou, Lihua
    Zheng, Lan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 137
  • [49] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    S. Sharan
    B. K. Sharma
    Kavikumar Jacob
    Journal of Applied Mathematics and Computing, 2022, 68 : 1505 - 1526
  • [50] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    Sharan, S.
    Sharma, B. K.
    Jacob, Kavikumar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1505 - 1526