A Reduce Points Algorithm of Radial Basis Function Dynamic Mesh Method

被引:0
|
作者
Huan, Jia [1 ]
Qin, Sun [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
关键词
Radial basis function dynamic mesh; Nonlinear aeroelasticity; Reduce points;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A reduce points algorithm was presented and applied to radial basis function dynamic mesh method. According to the given error, the algorithm had chosen some points form all the points on the CFD surface mesh. By interpolating an approximately surface on the selected points, the algorithm fill the drawback of radial basis function dynamic mesh method by reducing the computation time and storage. Taking m6 wing as an example, the simulation results show the initial point's insensitivity and the high efficiency of this algorithm. The algorithm can reduce the computation time of the dynamic mesh several times or even more. This property would be helpful in reducing the nonlinear aero elasticity computation time and storage.
引用
收藏
页码:2743 / 2746
页数:4
相关论文
共 50 条
  • [21] A Hybrid Genetic Algorithm and Radial Basis Function NEAT
    Mohabeer, Heman
    Soyjaudah, K. M. Sunjiv
    [J]. NEURAL NETWORKS AND ARTIFICIAL INTELLIGENCE, ICNNAI 2014, 2014, 440 : 159 - 170
  • [22] Interactive gradient algorithm for radial basis function networks
    Li, JY
    Luo, SW
    Qi, YJ
    Huang, YP
    [J]. 2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, 2002, : 1187 - 1190
  • [23] An incremental algorithm for learning radial basis function networks
    Blanzieri, E
    Giordana, A
    [J]. FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 667 - 673
  • [24] A new sequential learning algorithm for radial basis function network with application to dynamic system identification
    Yin, Jianchuan
    Dong, Fang
    Wang, Nini
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 3019 - 3023
  • [25] Adaptive radial basis function mesh deformation using data reduction
    Gillebaart, T.
    Blom, D. S.
    van Zuijlen, A. H.
    Bijl, H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 997 - 1025
  • [26] Curvilinear Mesh Adaptation Using Radial Basis Function Interpolation and Smoothing
    Vidhi Zala
    Varun Shankar
    Shankar P. Sastry
    Robert M. Kirby
    [J]. Journal of Scientific Computing, 2018, 77 : 397 - 418
  • [27] Curvilinear Mesh Adaptation Using Radial Basis Function Interpolation and Smoothing
    Zala, Vidhi
    Shankar, Varun
    Sastry, Shankar P.
    Kirby, Robert M.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 397 - 418
  • [28] Delaunay graph and radial basis function for fast quality mesh deformation
    Wang, Yibin
    Qin, Ning
    Zhao, Ning
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 : 149 - 172
  • [29] Efficient radial basis function mesh deformation methods for aircraft icing
    Morelli, Myles
    Bellosta, Tommaso
    Guardone, Alberto
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
  • [30] An efficient learning algorithm for function approximation with radial basis function networks
    Oyang, YJ
    Hwang, SC
    [J]. ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1037 - 1042