Curvilinear Mesh Adaptation Using Radial Basis Function Interpolation and Smoothing

被引:3
|
作者
Zala, Vidhi [1 ]
Shankar, Varun [2 ]
Sastry, Shankar P. [1 ]
Kirby, Robert M. [1 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
Curvilinear mesh generation; Radial basis functions; Conformal mapping; Mesh deformation; Mesh adaptation; Mesh quality; MULTIVARIATE INTERPOLATION; ALGORITHM; COMPUTATIONS; POLYNOMIALS; GENERATION;
D O I
10.1007/s10915-018-0711-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new iterative technique based on radial basis function (RBF) interpolation and smoothing for the generation and smoothing of curvilinear meshes from straight-sided or other curvilinear meshes. Our technique approximates the coordinate deformation maps in both the interior and boundary of the curvilinear output mesh by using only scattered nodes on the boundary of the input mesh as data sites in an interpolation problem. Our technique produces high-quality meshes in the deformed domain even when the deformation maps are singular due to a new iterative algorithm based on modification of the RBF shape parameter. Due to the use of RBF interpolation, our technique is applicable to both 2D and 3D curvilinear mesh generation without significant modification.
引用
收藏
页码:397 / 418
页数:22
相关论文
共 50 条
  • [1] Curvilinear Mesh Adaptation Using Radial Basis Function Interpolation and Smoothing
    Vidhi Zala
    Varun Shankar
    Shankar P. Sastry
    Robert M. Kirby
    [J]. Journal of Scientific Computing, 2018, 77 : 397 - 418
  • [2] Mesh deformation based on radial basis function interpolation
    de Boer, A.
    van der Schoot, M. S.
    Bijl, H.
    [J]. COMPUTERS & STRUCTURES, 2007, 85 (11-14) : 784 - 795
  • [3] Smoothing and interpolation with radial basis functions
    Myers, DE
    [J]. BOUNDARY ELEMENT TECHNOLOGY XIII: INCORPORATING COMPUTATIONAL METHODS AND TESTING FOR ENGINEERING INTEGRITY, 1999, 2 : 365 - 374
  • [4] Image Deformation using Radial Basis Function Interpolation
    Kwon, Jung Hye
    Lee, Byung Gook
    Yoon, Jungho
    Lee, JoonJae
    [J]. WSCG 2009, POSTER PROCEEDINGS, 2009, : 9 - +
  • [5] Referenceless Thermometry using Radial Basis Function Interpolation
    Agnello, Luca
    Militello, Carmelo
    Gagliardo, Cesare
    Vitabile, Salvatore
    [J]. 2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [6] Multivariate interpolation using radial basis function networks
    Dang Thi Thu Hien
    Hoang Xuan Huan
    Huu Tue Huynh
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2009, 1 (03) : 291 - 309
  • [7] A radial basis function interpolation surface
    Yin, BC
    Gao, W
    [J]. FIFTH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS, VOLS 1 AND 2, 1997, : 391 - 394
  • [8] Adaptive radial basis function interpolation using an error indicator
    Qi Zhang
    Yangzhang Zhao
    Jeremy Levesley
    [J]. Numerical Algorithms, 2017, 76 : 441 - 471
  • [9] Matching parameter estimation by using the radial basis function interpolation
    Fuji, Y.
    Abe, Y.
    Iiguni, Y.
    [J]. IET IMAGE PROCESSING, 2012, 6 (04) : 407 - 416
  • [10] Adaptive radial basis function interpolation using an error indicator
    Zhang, Qi
    Zhao, Yangzhang
    Levesley, Jeremy
    [J]. NUMERICAL ALGORITHMS, 2017, 76 (02) : 441 - 471