Reflections on harmonic analysis of the Sierpinski gasket

被引:0
|
作者
Denker, M
Sato, H
机构
[1] Univ Gottingen, Inst Math Stochastik, D-37083 Gottingen, Germany
[2] Kyushu Univ, Grad Sch Math, Fukuoka 8128581, Japan
关键词
Sierpinski gasket; harmonic function; Laplace operator; Martin boundary;
D O I
10.1002/1522-2616(200207)241:1<32::AID-MANA32>3.0.CO;2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the geometric structure of the Sierpinski gasket, KIGAMI [10], [11] established the harmonic analysis for the gasket analytically. On the other hand DENKER and SATO [3] proved that the Sierpinski gasket S in R-N has a natural description as the Martin boundary for some canonical Markov chain on the word space. The aim of this paper is to reveal the connection between the harmonic analysis of the Markov chain and that of the Sierpinski gasket viewed as a Martin boundary, and to describe this analysis in terms of the Markov operator, the Martin kernel and the structure of the word space.
引用
收藏
页码:32 / 55
页数:24
相关论文
共 50 条
  • [31] Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets
    Lapidus, Michel L.
    Sarhad, Jonathan J.
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2014, 8 (04) : 947 - 985
  • [32] Harmonic Extension on Level-3 Sierpinski Gasket via Electrical Network
    Kumar, R. Uthaya
    Devi, A. Nalayini
    2013 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2013, : 998 - 1004
  • [33] MEAN VALUE PROPERTY OF HARMONIC FUNCTION ON THE HIGHER-DIMENSIONAL SIERPINSKI GASKET
    Wu, Yipeng
    Chen, Zhilong
    Zhang, Xia
    Zhao, Xudong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (05)
  • [34] VARIATIONAL ANALYSIS FOR A NONLINEAR ELLIPTIC PROBLEM ON THE SIERPINSKI GASKET
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) : 941 - 953
  • [35] Multiband Analysis of Sierpinski Gasket Antenna with An Iterative Method
    Qu, Xinbo
    He, Zhaoxiang
    Shi, Wei
    Liu, Yunzhi
    Qian, Zuping
    2009 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2009), 2009, : 1460 - +
  • [36] Sierpinski's ubiquitous gasket
    Stewart, I
    SCIENTIFIC AMERICAN, 1999, 281 (02) : 90 - 91
  • [37] BOUNDED VARIATION ON THE SIERPINSKI GASKET
    Verma, S.
    Sahu, A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [38] Dimer coverings on the sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 631 - 650
  • [39] Spectral triples for the Sierpinski gasket
    Cipriani, Fabio
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 4809 - 4869
  • [40] ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK
    Chen, Jin
    He, Long
    Wang, Qin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)