Reflections on harmonic analysis of the Sierpinski gasket

被引:0
|
作者
Denker, M
Sato, H
机构
[1] Univ Gottingen, Inst Math Stochastik, D-37083 Gottingen, Germany
[2] Kyushu Univ, Grad Sch Math, Fukuoka 8128581, Japan
关键词
Sierpinski gasket; harmonic function; Laplace operator; Martin boundary;
D O I
10.1002/1522-2616(200207)241:1<32::AID-MANA32>3.0.CO;2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the geometric structure of the Sierpinski gasket, KIGAMI [10], [11] established the harmonic analysis for the gasket analytically. On the other hand DENKER and SATO [3] proved that the Sierpinski gasket S in R-N has a natural description as the Martin boundary for some canonical Markov chain on the word space. The aim of this paper is to reveal the connection between the harmonic analysis of the Markov chain and that of the Sierpinski gasket viewed as a Martin boundary, and to describe this analysis in terms of the Markov operator, the Martin kernel and the structure of the word space.
引用
收藏
页码:32 / 55
页数:24
相关论文
共 50 条
  • [21] On the box-counting dimension of graphs of harmonic functions on the Sierpinski gasket
    Sahu, Abhilash
    Priyadarshi, Amit
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
  • [22] Absolutely Minimizing Lipschitz Extensions and infinity harmonic functions on the Sierpinski gasket
    Camilli, Fabio
    Capitanelli, Raffaela
    Vivaldi, Maria Agostina
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 163 : 71 - 85
  • [23] Mean Value Properties of Harmonic Functions on Sierpinski Gasket Type Fractals
    Hua Qiu
    Robert S. Strichartz
    Journal of Fourier Analysis and Applications, 2013, 19 : 943 - 966
  • [24] GEODESICS OF THE SIERPINSKI GASKET
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [25] Sandpiles on a Sierpinski gasket
    Daerden, F
    Vanderzande, C
    PHYSICA A, 1998, 256 (3-4): : 533 - 546
  • [26] Sandpiles on a Sierpinski gasket
    Daerden, Frank
    Vanderzande, Carlo
    Physica A: Statistical Mechanics and its Applications, 1998, 256 (3-4): : 533 - 546
  • [27] Slicing the Sierpinski gasket
    Barany, Balazs
    Ferguson, Andrew
    Simon, Karoly
    NONLINEARITY, 2012, 25 (06) : 1753 - 1770
  • [28] Coloring Sierpinski graphs and Sierpinski gasket graphs
    Klavzar, Sandi
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (02): : 513 - 522
  • [29] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Xie, Hui-Hui
    Zeng, Guo-Mo
    QUANTUM INFORMATION PROCESSING, 2021, 20 (07)
  • [30] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Hui-Hui Xie
    Guo-Mo Zeng
    Quantum Information Processing, 2021, 20