EEG-Based Emotion Estimation with Different Deep Learning Models

被引:0
|
作者
Alakus, Talha Burak [1 ]
Turkoglu, Ibrahim [2 ]
机构
[1] Kirklareli Univ, Dept Software Engn, Kirklareli, Turkey
[2] Firat Univ, Dept Software Engn, Elazig, Turkey
关键词
emotion recognition; deep learning; log loss; AlexNet; VGG-16; RECOGNITION;
D O I
10.1109/ubmk.2019.8907135
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Emotion has a vital role in people's routine lives. It can be expressed via voice, facial expressions, body languages, mimics with intentionally or unintentionally to interact with the environment. In this regard, it is required to understand the emotion better to interpret the emotions. Emotion is generally used in many areas including rehabilitation applications, braincomputer interactions, genome-wide applications, healthcare services etc. There are many studies exist about emotion recognition with different approaches based on facial expression, voice and physiological signals. Yet, the first two of them can give incorrect information about emotions since these approaches can be manipulated by subjects easily. Thus, the more reliable and more durable approach proposed including EEG signals. Although it gives valuable information on emotion, EEG-based emotion estimation applications have not reached the desired level since its abstract and pattern recognition methods (falsified feature extraction methods, false classifier algorithms, big data, etc.) used for that applications. EEG-based emotion estimation is a complicated assignment which requires deep features, many EEG channels, clear signals and classifier algorithms. Determining the features and analyzing them requires time, thus in this study, we applied deep learning to discriminate the positive/negative emotional states. Our proposed method includes three parts; i) Collecting EEG data ii) Preprocessed the EEG data to denoise the signal iii) Deep learning with AlexNet and VGG-16 We collected EEG signals from 28 various subjects aged between 21-28 via portable and wearable EEG device called Emotiv Epoc+ 14 channel. In order to collect the signals, we applied four different video games as stimuli (2 negative and 2 positive labelled games) and collected signals totally 20 minutes long for each subject. At the end of the EEG collection process, we obtained 1568 number of EEG samples (14x28x4). To collect more reliable and healthy information from signals we preprocessed our signals. Finally, we performed two different deep learning algorithms to determine the positive-negative emotions and to compare their results. It is observed that the classification accuracies differ with different algorithms and the classification performance was found 92,09% with VGG16 which is superior to AlexNet algorithm 87,76%.
引用
收藏
页码:33 / 37
页数:5
相关论文
共 50 条
  • [41] EEG-based Emotion Recognition Using Multiple Kernel Learning
    Qian Cai
    Guo-Chong Cui
    Hai-Xian Wang
    Machine Intelligence Research, 2022, 19 : 472 - 484
  • [42] EEG-based Emotion Recognition Using Multiple Kernel Learning
    Cai, Qian
    Cui, Guo-Chong
    Wang, Hai-Xian
    MACHINE INTELLIGENCE RESEARCH, 2022, 19 (05) : 472 - 484
  • [43] EEG-based Emotion Detection Using Unsupervised Transfer Learning
    Gonzalez, Hector A.
    Yoo, Jerald
    Elfadel, Ibrahim M.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 694 - 697
  • [44] EEG-Based Emotion Recognition Using Quantum Machine Learning
    Garg D.
    Verma G.K.
    Singh A.K.
    SN Computer Science, 4 (5)
  • [45] Unsupervised Learning in Reservoir Computing for EEG-Based Emotion Recognition
    Fourati, Rahma
    Ammar, Boudour
    Sanchez-Medina, Javier
    Alimi, Adel M.
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) : 972 - 984
  • [46] EEG-Based Multimodal Emotion Recognition: A Machine Learning Perspective
    Liu, Huan
    Lou, Tianyu
    Zhang, Yuzhe
    Wu, Yixiao
    Xiao, Yang
    Jensen, Christian S.
    Zhang, Dalin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 29
  • [47] EEG-based Emotion Recognition Using Multiple Kernel Learning
    Qian Cai
    Guo-Chong Cui
    Hai-Xian Wang
    Machine Intelligence Research, 2022, 19 (05) : 472 - 484
  • [48] EEG-Based Drowsiness Estimation for Driving Safety Using Deep Q-Learning
    Ming, Yurui
    Wu, Dongrui
    Wang, Yu-Kai
    Shi, Yuhui
    Lin, Chin-Teng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (04): : 583 - 594
  • [49] Deep Learning for EEG-Based Preference Classification in Neuromarketing
    Aldayel, Mashael
    Ykhlef, Mourad
    Al-Nafjan, Abeer
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [50] Deep Neural Classifiers for EEG-Based Emotion Recognition in Immersive Environments
    Teo, Jason
    Chia, Jia Tian
    2018 INTERNATIONAL CONFERENCE ON SMART COMPUTING AND ELECTRONIC ENTERPRISE (ICSCEE), 2018,