EEG-Based Emotion Estimation with Different Deep Learning Models

被引:0
|
作者
Alakus, Talha Burak [1 ]
Turkoglu, Ibrahim [2 ]
机构
[1] Kirklareli Univ, Dept Software Engn, Kirklareli, Turkey
[2] Firat Univ, Dept Software Engn, Elazig, Turkey
关键词
emotion recognition; deep learning; log loss; AlexNet; VGG-16; RECOGNITION;
D O I
10.1109/ubmk.2019.8907135
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Emotion has a vital role in people's routine lives. It can be expressed via voice, facial expressions, body languages, mimics with intentionally or unintentionally to interact with the environment. In this regard, it is required to understand the emotion better to interpret the emotions. Emotion is generally used in many areas including rehabilitation applications, braincomputer interactions, genome-wide applications, healthcare services etc. There are many studies exist about emotion recognition with different approaches based on facial expression, voice and physiological signals. Yet, the first two of them can give incorrect information about emotions since these approaches can be manipulated by subjects easily. Thus, the more reliable and more durable approach proposed including EEG signals. Although it gives valuable information on emotion, EEG-based emotion estimation applications have not reached the desired level since its abstract and pattern recognition methods (falsified feature extraction methods, false classifier algorithms, big data, etc.) used for that applications. EEG-based emotion estimation is a complicated assignment which requires deep features, many EEG channels, clear signals and classifier algorithms. Determining the features and analyzing them requires time, thus in this study, we applied deep learning to discriminate the positive/negative emotional states. Our proposed method includes three parts; i) Collecting EEG data ii) Preprocessed the EEG data to denoise the signal iii) Deep learning with AlexNet and VGG-16 We collected EEG signals from 28 various subjects aged between 21-28 via portable and wearable EEG device called Emotiv Epoc+ 14 channel. In order to collect the signals, we applied four different video games as stimuli (2 negative and 2 positive labelled games) and collected signals totally 20 minutes long for each subject. At the end of the EEG collection process, we obtained 1568 number of EEG samples (14x28x4). To collect more reliable and healthy information from signals we preprocessed our signals. Finally, we performed two different deep learning algorithms to determine the positive-negative emotions and to compare their results. It is observed that the classification accuracies differ with different algorithms and the classification performance was found 92,09% with VGG16 which is superior to AlexNet algorithm 87,76%.
引用
收藏
页码:33 / 37
页数:5
相关论文
共 50 条
  • [31] Enhanced deep capsule network for EEG-based emotion recognition
    Huseyin Cizmeci
    Caner Ozcan
    Signal, Image and Video Processing, 2023, 17 : 463 - 469
  • [32] Role of machine learning and deep learning techniques in EEG-based BCI emotion recognition system: a review
    Samal, Priyadarsini
    Hashmi, Mohammad Farukh
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (03)
  • [33] Role of machine learning and deep learning techniques in EEG-based BCI emotion recognition system: a review
    Priyadarsini Samal
    Mohammad Farukh Hashmi
    Artificial Intelligence Review, 57
  • [34] EEG-BASED EMOTION CLASSIFICATION USING DEEP BELIEF NETWORKS
    Zheng, Wei-Long
    Zhu, Jia-Yi
    Peng, Yong
    Lu, Bao-Liang
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [35] Feature Selection of Deep Learning Models for EEG-Based RSVP Target Detection
    Chen, Jingxia
    Mao, Zijing
    Zheng, Ru
    Huang, Yufei
    He, Lifeng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (04) : 836 - 844
  • [36] A comprehensive review of deep learning in EEG-based emotion recognition: classifications, trends, and practical implications
    Ma, Weizhi
    Zheng, Yujia
    Li, Tianhao
    Li, Zhengping
    Li, Ying
    Wang, Lijun
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [37] A comprehensive review of deep learning in EEG-based emotion recognition: classifications, trends, and practical implications
    Ma W.
    Zheng Y.
    Li T.
    Li Z.
    Li Y.
    Wang L.
    PeerJ Computer Science, 2024, 10 : 1 - 39
  • [38] Emotion Estimation Using EEG with Deep learning Networks
    Vynatheya, Marrapu
    Subha, D. P.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [39] Effectiveness of multi-task deep learning framework for EEG-based emotion and context recognition
    Choo, Sanghyun
    Park, Hoonseok
    Kim, Sangyeon
    Park, Donghyun
    Jung, Jae-Yoon
    Lee, Sangwon
    Nam, Chang S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [40] Can Emotion Be Transferred?-A Review on Transfer Learning for EEG-Based Emotion Recognition
    Li, Wei
    Huan, Wei
    Hou, Bowen
    Tian, Ye
    Zhang, Zhen
    Song, Aiguo
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 833 - 846