Cas9-chromatin binding information enables more accurate CRISPR off-target prediction

被引:159
|
作者
Singh, Ritambhara [1 ,2 ]
Kuscu, Cem [1 ]
Quinlan, Aaron [1 ,3 ,4 ]
Qi, Yanjun [2 ]
Adli, Mazhar [1 ]
机构
[1] Univ Virginia, Sch Med, Dept Biochem & Mol Genet, Charlottesville, VA 22903 USA
[2] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22903 USA
[3] Univ Virginia, Ctr Publ Hlth Genom, Charlottesville, VA 22903 USA
[4] Univ Virginia, Dept Publ Hlth Sci, Charlottesville, VA 22903 USA
关键词
RNA-GUIDED ENDONUCLEASES; HUMAN-CELLS; HUMAN GENOME; CAS NUCLEASES; SYSTEM; SITES; TOOL; IDENTIFICATION; SPECIFICITY; ACTIVATION;
D O I
10.1093/nar/gkv575
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] CRISPert: A Transformer-Based Model for CRISPR-Cas Off-Target Prediction
    Pargeter, William Jobson
    Backofen, Rolf
    Tran, Van Dinh
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT VII, ECML PKDD 2024, 2024, 14947 : 92 - 104
  • [42] Prediction of sgRNA Off-Target Activity in CRISPR/Cas9 Gene Editing Using Graph Convolution Network
    Vinodkumar, Prasoon Kumar
    Ozcinar, Cagri
    Anbarjafari, Gholamreza
    ENTROPY, 2021, 23 (05)
  • [43] Transformer-based anti-noise models for CRISPR-Cas9 off-target activities prediction
    Guan, Zengrui
    Jiang, Zhenran
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [44] ONLINE AND OFFLINE TOOLS: CRISPR/CAS OFF-TARGET DETECTION
    Sangar, V. C.
    Samant, L.
    Pawar, S.
    Dhawale, P.
    Chowdhary, A. S.
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 2016, 7 (05): : 1889 - 1895
  • [45] Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing
    Aquino-Jarquin, Guillermo
    MOLECULAR GENETICS AND METABOLISM, 2021, 134 (1-2) : 77 - 86
  • [46] Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9
    Koo, Taeyoung
    Lee, Jungjoon
    Kim, Jin-Soo
    MOLECULES AND CELLS, 2015, 38 (06) : 475 - 481
  • [47] Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics
    Ricci, Clarisse G.
    Chen, Janice S.
    Miao, Yinglong
    Jinek, Martin
    Doudna, Jennifer A.
    McCammon, J. Andrew
    Palermo, Giulia
    ACS CENTRAL SCIENCE, 2019, 5 (04) : 651 - 662
  • [48] Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
    Shen B.
    Zhang W.
    Zhang J.
    Zhou J.
    Wang J.
    Chen L.
    Wang L.
    Hodgkins A.
    Iyer V.
    Huang X.
    Skarnes W.C.
    Nature Methods, 2014, 11 (4) : 399 - 402
  • [49] Genetic variation may confound analysis of CRISPR-Cas9 off-target mutations
    Wang, Guanqun
    Du, Meijie
    Wang, Jianbin
    Zhu, Ting F.
    CELL DISCOVERY, 2018, 4
  • [50] Evaluation of Homology-Independent CRISPR-Cas9 Off-Target Assessment Methods
    Chaudhari, Hemangi G.
    Penterman, Jon
    Whitton, Holly J.
    Spencer, Sarah J.
    Flanagan, Nicole
    Zhang, Maria C. Lei
    Huang, Elaine
    Khedkar, Aditya S.
    Toomey, J. Mike
    Shearer, Courtney A.
    Needham, Alexander W.
    Ho, Tony W.
    Kulman, John D.
    Cradick, T. J.
    Kernytsky, Andrew
    CRISPR JOURNAL, 2020, 3 (06): : 440 - 453