Almost isometric embedding between metric spaces

被引:4
|
作者
Kojman, Menachem [1 ]
Shelah, Saharon
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
以色列科学基金会;
关键词
D O I
10.1007/BF02773958
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the relations of almost isometric embedding and of almost isometry between metric spaces. These relations have several appealing features. For example, all isomorphism types of countable dense subsets of R form exactly one almost-isometry class, and similarly with countable dense subsets of Uryson's universal separable metric space U. We investigate geometric, set-theoretic and model-theoretic aspects of almost isometry and of almost isometric embedding. The main results show that almost isometric embeddability behaves in the category of separable metric spaces differently than in the category of general metric spaces. While in the category of general metric spaces the behavior of universality resembles that in the category of linear orderings - namely, no universal structure can exist on a regular lambda > N-1 below the continuum - in the category of separable metric spaces universality behaves more like that in the category of graphs, that is, a small number of metric separable metric spaces on an uncountable regular lambda < 2(No) may consistently almost isometrically embed all separable metric spaces on lambda.
引用
收藏
页码:309 / 334
页数:26
相关论文
共 50 条
  • [31] Isometric structure of transportation cost spaces on finite metric spaces
    Sofiya Ostrovska
    Mikhail I. Ostrovskii
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [32] Lipschitz and path isometric embeddings of metric spaces
    Le Donne, Enrico
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 47 - 66
  • [33] Lipschitz and path isometric embeddings of metric spaces
    Enrico Le Donne
    Geometriae Dedicata, 2013, 166 : 47 - 66
  • [34] BETWEENNESS RELATION AND ISOMETRIC IMBEDDINGS OF METRIC SPACES
    Dovgoshei, A. A.
    Dordovskii, D. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (10) : 1556 - 1567
  • [35] Isometric imbedding of some metric spaces in lp-spaces
    Vestfrid I.A.
    Ukrainian Mathematical Journal, 2001, 53 (12) : 2098 - 2104
  • [36] Betweenness relation and isometric imbeddings of metric spaces
    A. A. Dovgoshei
    D. V. Dordovskii
    Ukrainian Mathematical Journal, 2009, 61 : 1556 - 1567
  • [37] Isometric embeddings of a class of separable metric spaces into Banach spaces
    Mercourakis, Sophocles K.
    Vassiliadis, Vassiliadis G.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2018, 59 (02): : 233 - 239
  • [38] On the Structure of Discrete Metric Spaces Isometric to Circles
    Dress, Andreas W. M.
    Maehara, Hiroshi
    Pang, Sabrina Xing Mei
    Zeng, Zhenbing
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 83 - 94
  • [39] On compactness of embedding for Sobolev spaces defined on metric spaces
    Kalamajska, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1999, 24 (01) : 123 - 132
  • [40] Almost isometric flat spaces and perturbation-equivalence
    Yaffe, Yoav
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (09) : 1602 - 1606